Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huong Bui
Xem chi tiết
nguyễn phương trang
Xem chi tiết
Hải Lục Vũ
Xem chi tiết
HT.Phong (9A5)
8 tháng 11 2023 lúc 18:20

\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{x-2\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne4\right)\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2x-5\sqrt{x}+2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

Lorina Macmillan
Xem chi tiết
trần thúy an
Xem chi tiết
trần thúy an
8 tháng 7 2018 lúc 13:47

ai trả lời giúp mình với

Vũ Thị An
Xem chi tiết
Phạm Hồng Huện
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 13:26

\(P=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)

\(=2+\dfrac{2x+2}{\sqrt{x}}=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

Giao Khánh Linh
Xem chi tiết
I am lonely
Xem chi tiết
FL.Hermit
10 tháng 8 2020 lúc 14:34

\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(S=\frac{1}{\sqrt{x}+1}\)

Vậy    \(S=\frac{1}{\sqrt{x}+1}\)

Khách vãng lai đã xóa
✰ɮạċɦ☠ℌổ✰
Xem chi tiết
Trương quốc trọng
29 tháng 3 2020 lúc 9:26

ggggghgdhfdhfghsagyfgfghhg

Khách vãng lai đã xóa
✰๖ۣۜŠɦαɗøω✰
29 tháng 3 2020 lúc 10:00

Ta có : A = \(\left(\frac{x+2}{x.\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

                 = \(\frac{x+2+x+\sqrt{x}-2-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

                = \(\frac{x-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=1\)

Vậy A = 1

Khách vãng lai đã xóa