Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Oanh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 6 2020 lúc 15:46

\(\Leftrightarrow\left\{{}\begin{matrix}x\le2\\1< x< 3\end{matrix}\right.\) \(\Rightarrow1< x\le2\)

Hi Mn
Xem chi tiết
Nam Đàm
Xem chi tiết
Jack Viet
Xem chi tiết
Miner Đức
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
Ái Nữ
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 2 2021 lúc 23:14

\(x^2-2x< 0\Leftrightarrow0< x< 2\) \(\Rightarrow D_1=\left(0;2\right)\)

Xét \(f\left(x\right)=x^2+2\left(m-1\right)x+m^2\ge0\) (1)

\(\Delta'=\left(m-1\right)^2-m^2=1-2m\)

- Với \(\Delta'\le0\Leftrightarrow m\ge\dfrac{1}{2}\) thì (1) luôn đúng \(\Leftrightarrow\) hệ có nghiệm

- Với \(m< \dfrac{1}{2}\) \(\Rightarrow\) gọi 2 nghiệm của (1) là \(x_1< x_2\) \(\Rightarrow D_2=(-\infty;x_1]\cup[x_2;+\infty)\)

Để hệ vô nghiệm \(\Leftrightarrow D_1\cap D_2=\varnothing\) \(\Leftrightarrow x_1\le0< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\le0\\4+4\left(m-1\right)+m^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m^2+4m\le0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) Hệ có nghiệm khi \(m\ne0\)

Vậy 

Jack Viet
Xem chi tiết
anh em mình là 1 gia đìn...
Xem chi tiết
Akai Haruma
28 tháng 3 2021 lúc 20:55

Lời giải:

Nếu $x=-2$ thì HBPT $\Leftrightarrow $m\geq -2$

Nếu $x\neq -2$ thì HBPT \(\Leftrightarrow \left\{\begin{matrix} x+1\geq 0\\ x\leq m\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix} x\geq -1\\ x\leq m\end{matrix}\right.\Leftrightarrow -1\leq x\leq m(*)\).

Giả sử $m>-1$ thì HBPT có vô số nghiệm thực $x$

Giả sử $m< -1$ thì $(*)$ vô lý nên HBPT chỉ có thể nhận nhiều nhất 1 nghiệm $x=-2$

Giả sử $m=-1$ thì $(*)$ có nghiệm $x=-1$. Tổng kết lại HBPT có 2 nghiệm $x=-1$ và $x=-2$