§1. Mệnh đề

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ái Nữ

cho hệ pbt \(\left\{{}\begin{matrix}x^2-2x< 0\\x^2+2\left(m-1\right)x+m^2\ge0\end{matrix}\right.\)để hệ có nghiệm, m cần tìm là 

Nguyễn Việt Lâm
21 tháng 2 2021 lúc 23:14

\(x^2-2x< 0\Leftrightarrow0< x< 2\) \(\Rightarrow D_1=\left(0;2\right)\)

Xét \(f\left(x\right)=x^2+2\left(m-1\right)x+m^2\ge0\) (1)

\(\Delta'=\left(m-1\right)^2-m^2=1-2m\)

- Với \(\Delta'\le0\Leftrightarrow m\ge\dfrac{1}{2}\) thì (1) luôn đúng \(\Leftrightarrow\) hệ có nghiệm

- Với \(m< \dfrac{1}{2}\) \(\Rightarrow\) gọi 2 nghiệm của (1) là \(x_1< x_2\) \(\Rightarrow D_2=(-\infty;x_1]\cup[x_2;+\infty)\)

Để hệ vô nghiệm \(\Leftrightarrow D_1\cap D_2=\varnothing\) \(\Leftrightarrow x_1\le0< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\le0\\4+4\left(m-1\right)+m^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m^2+4m\le0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) Hệ có nghiệm khi \(m\ne0\)

Vậy 


Các câu hỏi tương tự
Ái Nữ
Xem chi tiết
Ái Nữ
Xem chi tiết
nhóc ngốc 0408
Xem chi tiết
nguyễn thị lan hương
Xem chi tiết
Nguyễn Phương Hiền
Xem chi tiết
Ho Nhat Minh
Xem chi tiết
đấng ys
Xem chi tiết
Phạm Tất Đạt
Xem chi tiết
Yến Hoàng
Xem chi tiết