§1. Mệnh đề

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ái Nữ

cho hệ pbt \(\left\{{}\begin{matrix}x^2+7x-8\le0\\ax^2+1>3+\left(3a-2\right)x\end{matrix}\right.\) để hệ bpt vô nghiệm, giá trị cần tìm của tham số a là

gãi hộ cái đít
21 tháng 2 2021 lúc 17:46

pt (1) có nghiệm\(-8< x< 1\)

pt (2) có nghiệm\(x>\dfrac{2}{a^2-3a+2}\) nếu a<1 hay a>2

\(x< \dfrac{2}{a^2-3a+2}\) nếu 1<a <2

pt \(\left(2\right)\)vô nghiệm nếu a=1 hay a=2

Để hệ bpt vô nghiệm:

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}\le-8\\\dfrac{2}{a^2-3a+2}\ge1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{a^2-3a+2}+8\le0\\\dfrac{2}{a^2-3a+2}-1\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{2\left(2a-3\right)^2}{a^2-3a+2}\le0\\\dfrac{-a^2+3a}{a^2-3a+2}\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}1< a< 2\\0\le a< 1< 2< a\le3\end{matrix}\right.\)

Nguyễn Việt Lâm
21 tháng 2 2021 lúc 18:03

Xét \(x^2+7x-8\le0\Leftrightarrow-8\le x\le1\) hay \(D_1=\left[-8;1\right]\)

Xét \(f\left(x\right)=ax^2-\left(3a-2\right)x-2>0\) (1)

- Với \(a=0\Leftrightarrow x>1\) hệ vô nghiệm (thỏa mãn)

- Với \(a\ne0\) , \(\Delta=\left(3a-2\right)^2+8a=9a^2-4a+4=9\left(a-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)

Gọi 2 nghiệm của pt (1) là \(x_1;x_2\)

TH1: \(\left\{{}\begin{matrix}a>0\\x_1\le-8< 1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a.f\left(-8\right)\le0\\a.f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\left(88a-18\right)\le0\\a\left(a-3a+2-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow0< a\le\dfrac{9}{44}\)

TH2: \(\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}x_1< x_2\le-8\\1\le x_1< x_2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\left[{}\begin{matrix}\left\{{}\begin{matrix}a.f\left(-8\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}< -8\end{matrix}\right.\\\left\{{}\begin{matrix}a.f\left(1\right)\ge0\\\dfrac{x_1+x_2}{2}=\dfrac{3a-2}{2a}>1\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Tự giải nốt nhé, nhìn mà thấy làm biếng luôn :D


Các câu hỏi tương tự
Ái Nữ
Xem chi tiết
Ái Nữ
Xem chi tiết
nhóc ngốc 0408
Xem chi tiết
nguyễn thị lan hương
Xem chi tiết
Nguyễn Phương Hiền
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Ho Nhat Minh
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết