1/ cho 2 hs y = x-1 và y = -2x +5
a/ Vẽ đồ thị hai hàm số đã cho trên cùng một mặt phảng tọa độ
b/ bằng phép tính tìm tọa độ giao điểm của 2 hs trên
2/ giải pt và hpt
a/ x\(^2\) -3x -2 =0 b/ x\(^4\) -x\(^2\) -12 c/ \(\left\{{}\begin{matrix}2x-3y=6\\5x+3y=-8\end{matrix}\right.\)
3/ rút gọn
A=\(\dfrac{4+\sqrt{15}}{4-\sqrt{15}}\) - \(\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\) B= 3 + \(\left(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\) . 3+\(\dfrac{a+5\sqrt{a}}{5-\sqrt{a}}\)\(\)
4/ cho tam giác ABC vuông tại A , AB=4.5 cm , AC=6 cm .
1) tính đcao AI và Diện tích hình tròn ngoại tiếp tam giác ABC
2) trên cạnh AC lấy H.đường tròn đường kính HC , BH cắt (o) tại D, OA cắt (O) tại K , đường tròn (O) cắt BC tại E . Chứng minh
a) tứ giác ABCD ; ABHE nội tiếp
b) CA là phân giác góc KCB
A =\(\left\{x\in N\backslash\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\right\}\)
B =\(\left\{n\in N^+\backslash3x< n< 30\right\}\)
Xét A
\(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
=> \(\left[{}\begin{matrix}\left(2x-x^2\right)=0=>x=2;x=0\\\\\left(2x^2-3x-2\right)=0=>x=2;x=-\frac{1}{2}\end{matrix}\right.\)
Vì \(x\in N\) => \(A=\left\{2\right\}\)
Xét B
\(3x< n^2< 30\)
<=> \(6< n^2< 30\)
<=> \(\sqrt{6}< n< \sqrt{30}\)
=>\(\left[\sqrt{6};\sqrt{30}\right]\)
Vì \(B\in N^+\) => \(B=\left[3;5\right]\)
\(A\cap B=\varnothing\)
giải hpt \(x+\sqrt{x}+\sqrt{y+1}=1\)
và \(y+\sqrt{y}+\sqrt{y+1}=1\)
giups mik vs
Tìm điều kiện tham số để hệ phương trình có nghiệm duy nhất :
1, \(\sqrt{x+1}+\sqrt{3-x}+2\sqrt{\left(x+1\right)\left(3-x\right)}=m\)
2, \(\sqrt{x^2+1}+\sqrt[3]{1-x^2}=m\)
3, \(\sqrt{x+2}+\sqrt{4-x}+4\sqrt{\left(x+2\right)\left(4-x\right)}=m\)
\(\left\{{}\begin{matrix}x,y,z\in R\\x^2+y^2+z^2=3\end{matrix}\right.\) Chung minh:
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Xét tính đung sai của mỗi mệnh đề sau và phát biểu phủ định của nó :
a) \(\sqrt{3}+\sqrt{2}=\dfrac{1}{\sqrt{3}-\sqrt{2}}\)
b) \(\left(\sqrt{2}-\sqrt{18}\right)^2>8\)
c) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) là một số hữu tỉ
d) \(x=2\) là một nghiệm của phương trình \(\dfrac{x^2-4}{x-2}=0\)
Tìm điều kiện tham số để hệ phương trình có nghiệm duy nhất :
1, \(\sqrt{x+1}+\sqrt{3-x}+2\sqrt{\left(x+1\right)\left(3-x\right)}=m\)
Gía trị lớn nhất của: y= 3x + \(\sqrt{8-x^2}\) (\(-2\sqrt{2}\le x\le2\sqrt{2}\)) là:
A. \(3\sqrt{5}\) B. \(8\sqrt{5}\) C. \(4\sqrt{5}\) D. \(6\sqrt{5}\)
Cho (P): y= x2-3x+m. Tìm m để (p) cắt Ox tại 2 điểm phân biệt có hoành độ x1,x2 sao cho \(\sqrt{x1^2+1}\)+\(\sqrt{x2^2+1}\)=\(3\sqrt{3}\)