Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)
Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm
Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)
TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn
TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb
Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử
\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)
\(\Leftrightarrow a=0\)
Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)