§1. Mệnh đề

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ái Nữ

\(\left\{{}\begin{matrix}x^2+2x+a\le0\\x^2-4x-6a\le0\end{matrix}\right.\) với giá trị nào của a thì hệ có nghiệm duy nhất

Nguyễn Việt Lâm
21 tháng 2 2021 lúc 17:39

Xét \(x^2+2x+a=0\) (1) và \(x^2-4x-6a=0\) (2)

Do hệ số của \(x^2\) đều dương nên BPT đã cho có nghiệm khi (1) và (2) đều có nghiệm

Gọi các nghiệm của (1) và (2) lần lượt là \(x_1\le x_2;x_3\le x_4\Rightarrow\left\{{}\begin{matrix}x_1=-1-\sqrt{1-a}\\x_2=-1+\sqrt{1-a}\\x_3=2-\sqrt{6a+4}\\x_4=2+\sqrt{6a+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\Delta'_1=1-a\ge0\\\Delta'_2=4+6a\ge0\end{matrix}\right.\) \(\Rightarrow-\dfrac{2}{3}\le a\le1\)

TH1: \(\left\{{}\begin{matrix}\Delta'_1=0\\x_3\le x_{1;2}\le x_4\end{matrix}\right.\) \(\Leftrightarrow a=1\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'_2=0\\x_1\le x_{3;4}\le x_2\end{matrix}\right.\) \(\Leftrightarrow a=-\dfrac{2}{3}\) thỏa mãn

TH3: khi \(-\dfrac{2}{3}< a< 1\) \(\Leftrightarrow\left(1\right)\) và (2) đều có 2 nghiệm pb

Khi đó \(\left[{}\begin{matrix}D_1=\left[x_1;x_2\right]\\D_2=\left[x_3;x_4\right]\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi và chỉ khi \(D_1\) và \(D_2\) giao nhau tại đúng 1 phần tử

\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_4\\x_2=x_3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1-\sqrt{1-a}=2+\sqrt{6a+4}\left(vô-nghiệm\right)\\-1+\sqrt{1-a}=2-\sqrt{6a+4}\end{matrix}\right.\)

\(\Leftrightarrow a=0\)

Vậy \(a=\left\{-\dfrac{2}{3};0;1\right\}\)


Các câu hỏi tương tự
Ái Nữ
Xem chi tiết
Ái Nữ
Xem chi tiết
nguyễn thị lan hương
Xem chi tiết
nhóc ngốc 0408
Xem chi tiết
Nguyễn Phương Hiền
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Linh Đặng
Xem chi tiết
Phạm Tất Đạt
Xem chi tiết
Ho Nhat Minh
Xem chi tiết