Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Thanh Hằng
Xem chi tiết
Nguyễn Đức Trí
31 tháng 7 2023 lúc 16:19

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)

\(\Rightarrow dpcm\)

Lê Song Phương
31 tháng 7 2023 lúc 16:22

 Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.

 (Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 11:19

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

Van Phuong Thao
Xem chi tiết
mai phương lê
Xem chi tiết
Vũ Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 22:06

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Nguyễn Thế Ánh
Xem chi tiết
Quốc Anh
Xem chi tiết
baby của jake sim
17 tháng 4 2022 lúc 12:06

xét tam giác AHB và tam giác CAB có:

góc H = góc A = 90 độ

góc B chung

=> tam giác AHB ~ tam giác CAB

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC

Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 19:52

c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)

=>\(AE=\dfrac{AH^2}{AB}\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{AH^2}{AC}\)

XétΔABC vuông tại A có

\(tanC=\dfrac{AB}{AC}\)

\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)

=>\(AF=AE\cdot tanC\)

Nguyễn Thuỳ Dương
Xem chi tiết
NXNM
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 21:26

b: AH=24cm

BH=18cm