Cho tam giác vuông ABC (A = 900), kẻ AH ⊥ BC
Chứng minh: AB2 + CH2 =AC2 +BH2
GIÚP MÌNH NHA !
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. Chứng minh: AB2 + CH2 = AC2 + BH2
Mọi người giúp mình bài này với nha,mình cảm ơn nhiều!
(Mọi người không cần vẽ hình đâu ạ!)
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
Cho tam giác ABC có ba góc nhọn và AH là đường cao
a, Chứng minh: A B 2 + C H 2 = A C 2 + B H 2
b, Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. A B 2 + A C 2 = B C 2 2 + 2 A M 2
2. A C 2 - A B 2 = 2 B C . H M (với AC > AB)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Cho tam giác ABC trực tâm H nội tiếp đường tròn (O ; R). Chứng minh rằng
AH2 + BC2 = BH2 + AC2 = CH2 + AB2 = 4R2
: Cho tam giác ABC (Â = 900); hạ AH ^ BC (H BC). Trên tia đối tia HA lấy điểm D sao cho HA=HD.
a) Chứng minh AB = DB.
b) Chứng minh =
c) Chứng minh AC2 + HB2 = AB2 + HC2
d) Qua A kẻ đường thẳng song song với BD và cắt BC tại E. Biết = 2 . Tam giác ABE là tam giác gì. Vì sao ?
mong mn giúp mình nhanh nhất có thể
cho tam giác abc cân tại a kẻ ah vuông góc với bc
chứng minh rằng tam giác ahb = tam giác ahc
chứng minh hc=hb
kẻ hd vuông góc ab;he vuông góc ac chứng minh tam giác hde cân;
ab2-ad2=dh2-bh2
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
Bài1. Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H thuộc BC).
a) Tìm các cặp tam giác đồng dạng.
b) Chứng minh AH2=BH.CH; AB2 = BH.BC; AC2 = CH.BC
c) Biết BH=9cm, CH = 16cm. Tính độ dài các cạnh của tam giác ABC.
Cho tam giác ABC vuông tại A; AB=14cm; BC=9cm. Kẻ đường cao AH và tia phân giác AD a)Chứng minh AB2=BH.BC MỌI NGƯờI GIÚP MÌNH VỚI Ạ!
xét tam giác AHB và tam giác CAB có:
góc H = góc A = 90 độ
góc B chung
=> tam giác AHB ~ tam giác CAB
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
giải giúp mình câu c với ạ
c: Xét ΔAHB vuông tại H có \(AE\cdot AB=AH^2\)
=>\(AE=\dfrac{AH^2}{AB}\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{AH^2}{AC}\)
XétΔABC vuông tại A có
\(tanC=\dfrac{AB}{AC}\)
\(\dfrac{AF}{AE}=\dfrac{AH^2}{AC}:\dfrac{AH^2}{AB}=\dfrac{AB}{AC}=tanC\)
=>\(AF=AE\cdot tanC\)
Bài 1: cho tam giác ABC có 3 góc nhọn, đường cao AH. a) Chứng mình rằng: AB2 + CH2 = AC2 + BH2 b) Gọi M,N theo thứ tự là hình chiếu của H lên AB và AC. Chứng mình rằng: AM . AB = AN . AC
Cho tam giác ABC vuông tại A có AB= 30cm, AC= 40cm.
a) Giải tam giác ABC.
b) Kẻ đường cao AH. Tính AH, BH.
c) Gọi I, K lần lượt là hình chiếu của H lên AB và AC. Chứng minh:
1/ IK2 = 1/ AB2 + 1/ AC2 . (dấu " / " nghĩa là phần, thay cho phân số) ; (số 2 kế bên chữ là mủ 2 [bình phương])