Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Gia Khoa
Xem chi tiết
Tuyen Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 6 2023 lúc 23:53

a: góc AHC=góc AKC=90 độ

=>AHKC nội tiếp

b: Sửa đề; AB*HC=AC*HA

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

=>AB*HC=AC*HA

Lê Mỹ Hạnh
Xem chi tiết
Trần Thị Nhung
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:45

b) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔIBH vuông tại H và ΔICH vuông tại H có 

BH=CH(cmt)

IH chung

Do đó: ΔIBH=ΔICH(hai cạnh góc vuông)

Suy ra: IB=IC(hai cạnh tương ứng)

Xét ΔIBC có IB=IC(cmt)

nên ΔIBC cân tại I(Định nghĩa tam giác cân)

Ta có: ΔIKC vuông tại K(gt)

nên IC là cạnh lớn nhất(Do IC là cạnh huyền)

hay IK<IC

mà IB=IC(cmt)

nên IK<IB

Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:48

c) Ta có: ΔKBC vuông tại K(gt)

nên \(\widehat{KBC}+\widehat{KCB}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{KBC}+\widehat{ACB}=90^0\)(1)

Ta có: \(\widehat{DBC}+\widehat{ABC}=\widehat{ABD}\)(tia BC nằm giữa hai tia BA,BD)

nên \(\widehat{DBC}+\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{KBC}=\widehat{DBC}\)

hay BC là tia phân giác của \(\widehat{KBD}\)(đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 4 2018 lúc 3:24

Nguyễn Thùy Dương
Xem chi tiết
Bùi phương anh
Xem chi tiết
nguyen dinh hai thai
28 tháng 4 2019 lúc 17:27

rễ vãi nhưng tao đéo trả lời hihi

nguyen dinh hai thai
28 tháng 4 2019 lúc 17:29

em bị hack nick vừa đổi mk

Seulgi
28 tháng 4 2019 lúc 18:36

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (tính chất)

góc ACB = góc ECN  (đối đỉnh)

=> góc ABC = góc ECN 

xét tam giác CEN và tam giác BDM có : BM = CN (gt)

góc CEN = góc BDM = 90 do ...

=> tam giác CEN = tam giác BDM (ch - gn)

=> BD = CE

Vũ Nguyễn Phương Thảo
Xem chi tiết
Tran Le Khanh Linh
2 tháng 4 2020 lúc 19:30

a) Xét \(\Delta EBC\)có \(\hept{\begin{cases}BE\perp AC\\DM\perp AC\end{cases}\Rightarrow}\)DM//EB => \(\frac{MC}{CE}=\frac{CD}{CB}\left(1\right)\)

Xét \(\Delta\)CFB có: \(\hept{\begin{cases}ND\perp FC\\BF\perp FC\end{cases}\Rightarrow}\)ND//BF => \(\frac{NC}{FC}=\frac{CD}{CB}\left(2\right)\)

Từ (1)(2) => \(\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow MC\cdot FC=CE\cdot NC\left(đpcm\right)\)

b) Xét tam giác FBC có:\(\hept{\begin{cases}QD\perp FB\\FC\perp FB\end{cases}\Rightarrow}\)QD//FC => \(\frac{QF}{FB}=\frac{DC}{BD}\)

mà \(\frac{DC}{BD}=\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow\frac{QF}{FB}=\frac{MC}{CE}=\frac{NC}{FC}\)hay \(\frac{QF}{FB}=\frac{NC}{CF}=\frac{MC}{CE}\)

=> Q,N,M thẳng hàng mà \(\frac{NC}{CF}=\frac{MC}{CE}\)=> MN//EF => QM//EF (đpcm)

c) Xét tam giác BEC có \(\hept{\begin{cases}PD\perp BE\\CE\perp BE\end{cases}}\)=> PD//EC => \(\frac{PE}{EB}=\frac{DC}{BC}\)

mà \(\frac{DC}{CB}=\frac{NK}{CF}=\frac{MC}{CE}=\frac{QF}{FB}\)

=> M,N,Q thẳng hàng (đpcm)

Khách vãng lai đã xóa
Hieu Hoang
Xem chi tiết