Với \(x>y>0\), tìm giá trị nhỏ nhất:
\(N=2x+\frac{32}{\left(x-y\right)\left(2y+3\right)^2}\)
Cho các số thực dương x,y,z thỏa mãn xyz = 8. Tìm giá trị nhỏ nhất của \(A=\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y^3}{\left(z+x\right)\left(z+2x\right)}+\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\)
Ta có
\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)
\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)
Tương tự ta có
\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)
\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)
Cộng vế theo vế ta được
\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)
\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)
Dấu = xảy ra khi x = y = z = 2
alibaba nguyễn Đúng rồi! Muốn k cho bạn lắm nhưng không hiểu sao cái nút "ĐÚNG" nó đơ mất rồi :(
với x,y,z là số thực đôi một khác nhau, hãy tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{2x-y}{x-y}\right)^2+\left(\frac{2y-z}{y-z}\right)^2+\left(\frac{2z-x}{z-x}\right)^2\)
Cho x,y là 2 số thực dương. Tìm giá trị nhỏ nhất
P=\(\frac{x+y}{\sqrt{x\left(2x+y\right)+\sqrt{y\left(2y+x\right)}}}\)
cho các số thực dương x,y,z thỏa mãn x+y+z=3xyz. Tìm giá trị nhỏ nhất của
P=\(\frac{yz}{x^3\left(z+2y\right)}+\frac{zx}{y^3\left(x+2z\right)}+\frac{xy}{z^3\left(y+2x\right)}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\). Tìm Min:\(P=\Sigma_{cyc}\frac{a^3}{\left(b+2c\right)}\)
Auto làm nốt:3
Bài tập chỉ mang tính giải trí, ^^
Cho các số x, y dương. Tìm gi{ trị nhỏ nhất của biểu thức:
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^2+1}-1}+\frac{\left(2x+y\right)\left(y+2x\right)}{4}-\frac{8}{3\left(x+y\right)}\)
bạn Kiệt có đánh sai chỗ nào ko vậy :)). mình thấy có 1 lỗi :)).
Đặt \(a=2x+y;b=2y+x\) \(\left(a,b>0\right)\)
Khi đó : \(P=\frac{2}{\sqrt{a^3+1}-1}+\frac{2}{\sqrt{b^3+1}-1}+\frac{ab}{4}-\frac{8}{a+b}\)
Cô-si , ta có : \(\sqrt{a^3+1}=\sqrt{\left(a+1\right)\left(a^2-a+1\right)}\le\frac{a+1+a^2-a+1}{2}=\frac{a^2+2}{2}\)
\(\Rightarrow\sqrt{a^3+1}-1\le\frac{a^2}{2}\)
Tương tự : \(\sqrt{b^3+1}-1\le\frac{b^2}{2}\)
Mặt khác : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{2}{a}+\frac{2}{b}\ge\frac{8}{a+b}\Rightarrow-\frac{8}{a+b}\ge\frac{-2}{a}-\frac{2}{b}\)
\(P\ge\frac{4}{a^2}+\frac{4}{b^2}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}=\left(\frac{4}{a^2}+1\right)+\left(\frac{4}{b^2}+1\right)+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2\)
\(\ge\frac{4}{a}+\frac{4}{b}+\frac{ab}{4}-\frac{2}{a}-\frac{2}{b}-2=\frac{2}{a}+\frac{2}{b}+\frac{ab}{4}-2\ge3\sqrt[3]{\frac{2}{a}.\frac{2}{b}.\frac{ab}{4}}-2=1\)
Vậy GTNN của P là 1 \(\Leftrightarrow a=b=2\Leftrightarrow x=y=\frac{2}{3}\)
Mình nghĩ đề sửa là:
Cho các số x,y nguyên. Tìm GTM của biểu thức
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^3+1}-1}+\frac{\left(2x+y\right)\left(x+2y\right)}{4}-\frac{8}{3\left(x+y\right)}\)
Cách làm giống @Thanh Tùng DZ@ nên không trình bày lại
Cho x, y là 2 số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\)
Áp dụng bất đẳng thức Cauchy, ta có: \(\sqrt{x\left(2x+y\right)}=\frac{1}{\sqrt{3}}.\sqrt{3x\left(2x+y\right)}\le\frac{5x+y}{2\sqrt{3}}\)
Tương tự: \(\sqrt{y\left(2y+x\right)}\le\frac{5y+x}{2\sqrt{3}}\)
\(\Rightarrow\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}\le\frac{6\left(x+y\right)}{2\sqrt{3}}=\frac{3\left(x+y\right)}{\sqrt{3}}\)\(\Rightarrow P=\frac{x+y}{\sqrt{x\left(2x+y\right)}+\sqrt{y\left(2y+x\right)}}\ge\frac{x+y}{\frac{3}{\sqrt{3}}\left(x+y\right)}=\frac{1}{\sqrt{3}}\)
Đẳng thức xảy ra khi x = y
cho x;y>0 thỏa mãn x+y=1
Tìm giá trị nhỏ nhất của \(A=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
làm giúp mai thi rồi
\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(=\frac{\left(2x+\frac{1}{x}\right)^2}{1}+\frac{\left(2y+\frac{1}{y}\right)^2}{1}\)
\(\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}=18\)
Đẳng thức xảy ra tại x=y=1/2
a) Cho phương trình \(x^2-\left(m+1\right)x+m-3=0\) (m là tham số). Gọi x1,x2 là 2 nghiệm phân biệt của phương trình, tìm giá trị nhỏ nhất của biểu thức:
\(\frac{1}{\left(x1-1\right)^2}+\frac{1}{\left(x2-1\right)^2}\)
b) Cho x,y,z thay đổi thỏa mãn \(\frac{1}{x+2y}+\frac{1}{y+2z}+\frac{1}{z+2x}=1\). Tìm giá trị nhỏ nhất của biểu thức:
P=\(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)
Câu 1: Giá trị nhỏ nhất của
\(\left|x-3\right|+\left|Y+3\right|+2016\) là:...
Câu 2: Giá trị của x để biểu thức:
\(M=\left(2x-1\right)^2+\left(2y-1\right)+2013\)Đạt giá trị nhỏ nhất
Câu 3: Giá trị x>0 thỏa mãn (x-10)+(2x-6)=8
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8