Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♚ QUEEN ♚
Xem chi tiết
Thanh Tùng DZ
15 tháng 2 2019 lúc 20:12

làm nổi à bạn. 

Thanh Tùng DZ
15 tháng 2 2019 lúc 21:01

1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)

\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)

Thanh Tùng DZ
15 tháng 2 2019 lúc 21:12

2. a + b + c = 1 \(\Rightarrow\)( a + b + c )2 = 1 \(\Rightarrow\)a2 + b2 + c2 + 2 ( ab + bc + ac ) = 1 \(\Rightarrow\)ab + bc + ac = 0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\)x = a ( x + y + z ) ; y = b ( x + y + z ) ; z = c ( x + y + z )

Ta có : xy + yz + xz = ab ( x + y + z )2 + bc ( x + y + z )2 + ac ( x + y + z )2 = ( x + y + z )2 ( ab + bc + ac ) = 0

3. sửa đề : 3x - y = 3z

Ta có : \(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}\Rightarrow\hept{\begin{cases}\left(3x-y\right)+\left(2x+y\right)=3z+7z\\2x+y=7z\end{cases}\Rightarrow}\hept{\begin{cases}5x=10z\\y=7z-2x\end{cases}\Rightarrow}\hept{\begin{cases}x=2z\\y=3z\end{cases}}}\)

\(\Rightarrow\)\(S=\frac{x^2-2xy}{x^2+y^2}=\frac{\left(2z\right)^2-2.2z.3z}{\left(2z\right)^2+\left(3z\right)^2}=\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8z^2}{13z^2}=\frac{-8}{13}\)

Bao Nguyen Trong
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 9:10

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

Khách vãng lai đã xóa
Dung Đặng Phương
Xem chi tiết
Thái Cao Bạch Trà
Xem chi tiết
Hoang Hung Quan
24 tháng 2 2017 lúc 19:45

Ta có:

\(2\left(a^2+b^2\right)=5ab\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\) hay \(b=2a\)

\(a>b>c\Leftrightarrow a=2b\)

\(\Leftrightarrow\frac{3a-b}{2a+b}=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

Vậy \(\frac{3a-b}{2a+b}=1\)

Nguyễn Thị Hằng
Xem chi tiết
Mai Minh Tùng
Xem chi tiết
shunnokeshi
Xem chi tiết

kết quả = 14 nha bạn

Khách vãng lai đã xóa
Nấm Nấm
Xem chi tiết
shitbo
30 tháng 8 2019 lúc 20:56

Đặt \(x^2=a\ge0;y^2=b\ge0\)

Ta có BĐT phụ:\(4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

Ta có:\(\frac{4ab}{\left(a+b\right)^2}+\frac{a}{b}+\frac{b}{a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2}+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=3\) ( BĐT AM-GM )

Ta có đpcm

tth_new
26 tháng 9 2019 lúc 10:36

Câu 2:

\(\frac{a^2b}{2a^3+b^3}-\frac{1}{3}+1-\frac{a^2+2ab}{2a^2+b^2}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{2a^2+b^2}-\frac{\left(a-b\right)^2\left(2a+b\right)}{3\left(2a^3+b^3\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{2a^2+b^2}-\frac{\left(2a+b\right)}{3\left(2a^3+b^3\right)}\right]\ge0\)

\(\Leftrightarrow\frac{2\left(a-b\right)^4\left(a+b\right)}{3\left(2a^2+b^2\right)\left(2a^3+b^3\right)}\ge0\left(ok!\right)\)

Em tính/ quy đồng/ phân tích thành nhân tử sai chỗ nào thì chị tự check nhá:)

tth_new
26 tháng 9 2019 lúc 10:39

Bài 1 có vẻ shitbo ngươc dấu(chỗ nào tự hiểu ha:D)

Đặt \(\left(x^2;y^2\right)=\left(a;b\right)\) thì a, b > 0. Cần chứng minh:

\(\frac{a}{b}+\frac{b}{a}-2+\frac{4ab}{\left(a+b\right)^2}-1\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}-\frac{\left(a-b\right)^2}{\left(a+b\right)^2}\ge0\Leftrightarrow\left(a-b\right)^2\left(\frac{a^2+ab+b^2}{ab\left(a+b\right)^2}\right)\ge0\left(ok\right)\)

Tính + quy đồng + phân tích sai chỗ nào thì chị tự check nha:D

Trần Trà My
Xem chi tiết
Khong Biet
18 tháng 12 2017 lúc 16:06

Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)

lương đức kiên
1 tháng 9 2020 lúc 16:53

Có a+2b-c/c=b+2c-a/a=c+2a-b/b

suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2

suy ra a+2b-c=2c suy ra a+2b=3c

           b+2c-a=2a suy ra b+2c=3a

           c+2a-b=2b suy ra c+2a=3b

Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27

Khách vãng lai đã xóa
Nguyễn Thị Thu Hà
2 tháng 9 2020 lúc 17:28
Đồ con lợn
Khách vãng lai đã xóa