cho đa thức ax+27 (a là hằng số ) Để đa thức đã cho nhận 3 làm nghiệm thì hệ số a bằng bao nhiêu
hãy xác định hệ số a để đa thức A(x)=-2x+a nhận 2 làm nghiệm
Hãy xác định hệ số a để đa thức A(x)=ax2+2x-1 nhận 1 làm nghiệm
1. cho đa thức
f(x) = x\(^3\)-ax\(^2\)-9x+b
a) tìm a và b để đa thức f(x) có hai nghiệm là 1 và 3.
b) hãy viết lại đa thức có các hệ số là a và b vừa tìm đc rồi tìm nghiệm còn lại của đa thức đó.
2. xác dịnh hệ số của đa thức khi biết nghiệm của đa thức đó.
a) xác định hệ số m để đa thức f(x) = mx\(^3\)-2x+3 nhận x = 1 làm một nghiệm.
b) xác địnhhệ số m để đa thức g(x) = x\(^2\)+3mx+5 nhận x = 2 làm một nghiệm.
c) xác định hệ số m để đa thức h(x) = 3x\(^4\)+x\(^2\)-x+m nhận x = -1 làm một nghiệm.
3. cho f(a) = 2x\(^2\)+ax+4 (a là hằng ).
g(x) = x\(^2\)-5x-b (b là hằng ).
Tìm các hệ số a, b sao cho f(1) = g(2) và f(-1) = g(5).
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
Cho đa thức P=2ax⁵y²-3/2x²y³-2024+y+1(trong đó a là hằng số) tìm giá trị của hằng số a để đa thức đã cho có bậc là 3
Cho đa thức P=2ax⁵y²-3/2x²y³-2024+y+1(trong đó a là hằng số) tìm giá trị của hằng số a để đa thức đã cho có bậc là 3 Mình đang cần gấp đáp án
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
1) Tìm nghiệm của đa thức M(x)= -2x+3
2) Tìm hệ số a để đa thức P(x)= ax+1 có nghiệm là -2
Giải
1) M(x) = -2x+3 ->-2x+3 =0
->x= 3/2
Vậy nghiệm của M(x) là 3/2
2) P(x) =ax+1 có nghiệm là -2
-> P(-2) =a*(-2)+1=0
-> a= 1/2
Vậy hệ số của P(x) là 1/2
a)cho đa thức f(x)=ax+b.Tìm điều kiện của a và b để f(7)=f(2)+f(3)
b) Tìm nghiệm của P(x)=(x-2).(2x+5)
c) Tìm hệ số a của P(x)= x^4+ax^2-4.
Biết rằng, đa thức này có 1 nghiệm là -2
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
tại sao a7 + b = 5a + 2b lại bằng 2a = b vậy ạ
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~
Cho đa thức P(x)= ax^2 +bx+c trong đó các hệ số a, b, c là các số nguyên khác 0.Chứng minh rằng nếu đa thức có 1 nghiệm là số nguyên khác 0 thì nghiệm đó là ước của c.