Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hải Yến
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 6 2019 lúc 22:52

Đề bài sai nếu \(x;y\in R\)

Cho \(y=4;x=-0,000001\) thì vế trái ra 1 số âm có trị tuyệt đối cực to

Đề đúng phải là \(x;y\in R^+\)

Làm trong trường hợp đề đã chỉnh lại:

\(VT=x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x}{2}+\frac{1}{2x}+\frac{y}{2}+\frac{2}{y}+\frac{1}{2}\left(x+y\right)\)

\(VT\ge2\sqrt{\frac{x}{2}.\frac{1}{2x}}+2\sqrt{\frac{y}{2}.\frac{2}{y}}+\frac{1}{2}.3=\frac{9}{2}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

I am Jungkook and V
Xem chi tiết
Phùng Minh Quân
29 tháng 9 2018 lúc 6:44

\(a)\) Giả sử \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2+2\left|xy\right|+\left|y\right|^2\ge\left(x+y\right)^2\)

\(\Leftrightarrow\)\(x^2+2\left|xy\right|+y^2\ge x^2+2xy+y^2\)

\(\Leftrightarrow\)\(2\left|xy\right|\ge2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

\(b)\) Giả sử \(\left|x\right|-\left|y\right|\le\left|x-y\right|\)

\(\Leftrightarrow\)\(\left(\left|x\right|-\left|y\right|\right)^2\le\left|x-y\right|^2\)

\(\Leftrightarrow\)\(\left|x\right|^2-2\left|xy\right|+\left|y\right|^2\le\left(x-y\right)^2\)

\(\Leftrightarrow\)\(x^2-2\left|xy\right|+y^2\le x^2-2xy+y^2\)

\(\Leftrightarrow\)\(-2\left|xy\right|\le-2xy\)

\(\Leftrightarrow\)\(\left|xy\right|\ge xy\) ( luôn đúng ) 

Chúc bạn học tốt ~ 

saadaa
Xem chi tiết
saadaa
Xem chi tiết
sasfet
Xem chi tiết
phi Dinh manh
Xem chi tiết
Lê Minh Anh
2 tháng 9 2016 lúc 15:58

a/ Giả sử: |x| + |y| < |x + y|  => ( |x| + |y| )2  <  ( |x +  y|2)  => x2 + 2 . |x| . |y| + y2  < x2 + 2xy + y2   =>  |x| . |y|  < xy (Vô lý)

=> |x| + |y|  \(\ge\) |x + y|

b/ Giả sử: |x| - |y| > |x - y|  => ( |x| - |y| )2  > ( |x -  y|2)  => x2 - 2 . |x| . |y| + y2  < x2 - 2xy + y2   => - |x| . |y|  > -xy (Vô lý)

=> |x| - |y|  \(\le\) |x - y|

Lê Minh Anh
2 tháng 9 2016 lúc 16:02

Cách 2: 

a/ Giả sử: |x| + |y|\(\ge\)|x + y|  => ( |x| + |y| )\(\ge\) ( |x +  y|2)  => x2 + 2 . |x| . |y| + y2 \(\ge\) x2 + 2xy + y2   =>  |x| . |y|   \(\ge\) xy (Bất đẳng thức đúng)

Vậy |x| + |y|  \(\ge\) |x + y|

b/ Giả sử: |x| - |y|  \(\le\)|x - y|  => ( |x| - |y| )2 \(\le\)( |x -  y|2)  => x2 - 2 . |x| . |y| + y2  \(\le\)x2 - 2xy + y2   => - |x| . |y|    \(\le\)  -xy (Bất đẳng thức đúng)

Vậy |x| - |y|  \(\le\) |x - y|

roronoa zoro
Xem chi tiết
saadaa
Xem chi tiết
Tuấn
6 tháng 8 2016 lúc 21:56

a, \(^{\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}\Rightarrow}x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+z^2\ge0}\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow A\le\frac{a^2}{3}\). dấu = xảy ra khi và chỉ khi x=y=z=a/3
b,Ap dụng bđt bunhia ta đc \(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=a^2\Rightarrow B\ge\frac{a^2}{3}\)
dấu = xảy ra khi x=y=z=a/3

saadaa
Xem chi tiết