\(\left(x-2\right)^2\times\left(y-3\right)=-4\)
Tìm x,y biết
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(2\times x+2^{x+3}=136\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left(2\times x-5\right)^{2000}+\left(3\times y+4\right)^{2002}\le0\)
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
\(\left(^{x^2}\times y\right)^{^5}\times\left(x^2\times y^2\right)^7\times\left(x\times y^2\right)^6\times x^3\)
\(\left(x^2.y\right)^5.\left(x^2.y^2\right)^7.\left(x.y^2\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^{12}.x^3\)
\(=x^{33}.y^{31}\)
\(3x\times\left(1-x\right)+\left(x+3\right)\times\left(x-2\right)=-2\times\left(x-4\right)^2\)
Lời giải:
$3x(1-x)+(x+3)(x-2)=-2(x-4)^2$
$\Leftrightarrow (3x-3x^2)+(x^2-2x+3x-6)=-2(x^2-8x+16)$
$\Leftrightarrow -2x^2+4x-6=-2x^2+16x-32$
$\Leftrightarrow 12x=26\Rightarrow x=\frac{13}{6}$
Vậy........
cho 2 đa thức \(A=2\times x^2\times y^3-3\times x^3\times y^2+x^2\times y^2+1\)
\(B=2\times x^2\times y^3-3\times x^3\times y^2-x^2\times y^2+2\)
Tính \(2\times A-\left(B-\left(A-\left(-4\times B\right)\right)\right)\)
tìm số nguyên x, y biết: \(42-3\times\left(y-3\right)^2=4\times\left(2012-x\right)^4\)
Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Em chỉ cần đổi số 2015 ----> 2012
Tìm x biết
a)\(\dfrac{2}{\left(x+2\right)\times\left(x+4\right)}+\dfrac{4}{\left(x+4\right)\times\left(x+8\right)}+\dfrac{6}{\left(x+8\right)\times\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\times\left(x+14\right)}\)
Lời giải:
PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Rightarrow x=12\) (thỏa mãn)
Vậy......
Tìm x \(\frac{2}{\left(x-1\right)\times\left(x-3\right)}+\frac{5}{\left(x-3\right)\times\left(x-8\right)}+\frac{12}{\left(x-8\right)\times\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)-3/4
Tìm x, y\(\in\) Z biết:
a, \(\left(2x+1\right)\times\left(4y-2\right)=-42\)
b, \(\left(x^2-13\right)\times\left(x^2-17\right)< 0\)
c, \(\left(x^2-4\right)+\left(y-3\right)=0\)
1)Phân tích đa thức sau thành nhân tử ;
a)\(x^3+\left(a+b+c\right)\times x^2+\left(ab+ac+bc\right)\times x+abc\)
b)\(x\times\left(y^2-z^2\right)+y\left(z^2-x^2\right)-z\left(x^2-y^2\right)\)
a) x3 + (a+b+c)x2+ (ab+ac+bc)x +abc
= x3 +ax2+bx2+cx2+abx+acx+bcx+abc
=x3+cx2+abx+abc+ax2+acx+bx2+bcx
=x2 (x+c) + ab (x+c) +ax (x+c) +bx (x+c)
= (x+c) (x2+ab+ax+bx)
= (x+c) { x(x+b)+a(x+b)}
=(x+c) (x+b) (x+a)
Giải phương trình:
\(3x\times\left(1-x\right)+\left(x+3\right)\times\left(x-2\right)=-2\times\left(x-4\right)^2\)
Ta có : \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x-4\right)^2\)
=> \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x^2-8x+16\right)\)
=> \(3x-3x^2+x^2+3x-2x-6=-2x^2+16x-32\)
=> \(3x-3x^2+x^2+3x-2x-6+2x^2-16x+32=0\)
=> \(-12x+26=0\)
=> \(x=\frac{26}{12}=\frac{13}{6}\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{13}{6}\right\}\)