Tìm m để phương trình \(5+m=\dfrac{6}{x+2}\) có nghiệm là số không âm
4) Tìm a thuộc Z để phương trình sau có nghiệm duy nhất là số nguyên
a^2x+2x=3(a+1-ax)
5) Tìm m để phương trình: (m^2+5)x=2-2mx
có nghiệm duy nhất đạt giá trị lớn nhất
6) Tìm tất cả các số thực a không âm sao cho phương trình: (a^2-4)x=a^2-ma+16 (ẩn x)
có nghiệm duy nhất là số nguyên
cho 2 phương trình bậc hai x2 - 2x + m = 0 (1)
(1) Tìm m để phương trình (1) có nghiệm
(2) Chứng minh rằng với mọi m, phương trình (1) không thể có hai nghiệm cùng là số âm
(3) Tìm m để phương trình (1) có hai nghiệm thỏa mãn x1 - 2x2 =5
(1) Phương trình 1 có nghiệm
<=> \(\Delta'\ge0\)<=> \(1-m\ge0\Leftrightarrow m\le1\)
(2) Gọi x1 , x2 là 2 nghiệm của phương trình
x1+x2=2>0 => Phương trình có ít nhất một nghiệm dương => Không thẻ có 2 nghiệm cùng là số âm
(3) x1+x2=2, x1-2x2=5
=> x1=3, x2=-1
mà x1.x2=m => m=-3
em vẫn thắc mắc câu (3) ạ, chị giải thích rõ cho em với
Theo đề vài X1 -2. x2 =5 (1)
Theo định lí Viet
x1 +x2=2 (2)
x1. x2=m (3)
Từ (1) (2) Suy ra x1=3, x2=-1
Thay vào (3) suy ra m=-3
Bài 1:cho phương trình x^2 - 6x + m=0. Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu
Bài 2 :cho phương trình x^2 + 2 (m+1) x + m^2=0. Tìm m để phương trinh co 2 nghiem phan biet, trong đó có 1 nghiệm bằng -2
Bài 3:cho pt x^2 -(m+5) x + m - 6=0. Tìm m để pt có 1 nghiệm bằng -2. Tim nghiệm còn lại
Bài 4:cho hàm số y=-2x^2 có đồ thị là parabol (P) và hàm số y==4x + m. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ âm
Cho pt ẩn x sau: (2x+m)(x-1)-2x\(^2\)+mx+-2=0. Tìm các gái trị của m để phương trình có nghiệm là 1 số không âm
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)
\(\Leftrightarrow-2x+2mx-m-2=0\)
\(\Leftrightarrow2x\left(m-1\right)=m+2\)
\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)
Để phương trình có nghiệm là 1 số không âm thì:
\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow m>1\) hay \(m\le-2\).
-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.
1) Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=3m+2\\2x-3y=m-11\end{matrix}\right.\)
(m là tham số)
Tìm giá trị m không âm để hệ phương trình có nghiệm (x;y) thỏa mãn (x2+1)+(y2+1)=12
2) Tìm một số tự nhiên có hai chữ số biết rằng tổng của 5 lần chữ số hàng chục và 2 lần chuex số hàng đơn vị là 29.Nếu viết hai chữ số của nó theo thứ tự ngược lại thì số mới có hai chữ số lớn hơn số ban đầu 36 đơn vị.
Bài 2:
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36
=>5a+2b=29 và -9a+9b=36
=>a=3 và b=7
Cho Phương Trình \(x^2-2\left(m-1\right)x+m^2-3m=0\)
Tìm m để phương trình có 2 nghiệm trái dấuTìm m để phương trình có 2 nghiệm cùng dấuTìm m để phương trình có 2 nghiệm đều âmTìm m để phương trình có 2 nghiệm đều dươngTìm m để phương trình có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dươngTìm m để phương trình có 2 nghiệm trái dấu và nghiệm dương có giá trị tuyệt đối lớn hơn nghiệm âmTìm m để phương trình có 1 nghiệm bằng 0. Tìm những nghiệm còn lạiTìm một hệ thức giữa các nghiệm \(x_1\) và \(x_2\) không phụ thuộc vào mGIẢI CÂU NÀO CŨNG ĐƯỢC. GIÚP MK NHÉ, PLS. MK SẼ TICK CHO MẤY BẠN GIẢI BÀI
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)
a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
b) tìm m để 3.x1 + 2.x2 = 5m -16
c) cho A= x1² + x2² + 6.x1.x2
c.1) tìm m để A = -44
c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.
d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.
e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.
f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.
g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.
h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.
i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.
j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²
l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.
m) tìm m để x1³ + x2³ <0
n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)
TL :
Đề sai
\(x1^2\)là số gì
HT
Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.
Xét pt \(x^2-2\left(m-4\right)x+2m-20=0\), có \(a=1;b=-2\left(m-4\right);c=2m-20\)
Ta có \(\Delta=b^2-4ac=\left[-2\left(m-4\right)\right]^2-4.1.\left(2m-20\right)\)
\(=4\left(m-4\right)^2-8m+80\)\(=4\left(m^2-8m+16\right)-8m+80\)\(=4m^2-32m+64-8m+80\)\(=4m^2-40m+144\)\(=4\left(m^2-10m+25\right)+44\)\(=4\left(m-5\right)^2+44\)
Do \(\left(m-5\right)^2\ge0\Leftrightarrow4\left(m-5\right)^2+44\ge44>0\Leftrightarrow\Delta>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt.
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
Cho phương trình:\(mx^2+2\left(m-2\right)x+m-3=0\)
1)Xác định m để phương trình có 2 nghiệm trái dấu
2)Xác định m để phương trình có 2 nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn
3)Tìm hệ thức 2 nghiệm không phụ thuộc vào m
4)Tìm min A biết A=\(x_1^2+x_2^2\)
1) Để phương trình có hai nghiệm trái dấu thì
\(\left\{{}\begin{matrix}m\ne0\\\Delta'>0\\P< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\-m+4>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}m\ne0\\m< 4\\m< 3\end{matrix}\right.\) \(\Rightarrow\) 0\(\ne\)m<3.
Vậy: với 0\(\ne\)m<3, phương trình đã cho có hai nghiệm trái dấu.
2) Thừa hưởng từ kết quả câu 1, để nghiệm âm có giá trị tuyệt đối lớn hơn thì S<0 \(\Leftrightarrow\) \(\dfrac{-2\left(m-2\right)}{m}\)<0 \(\Leftrightarrow\) m>2.
Vậy: với 2<m<3, phương trình đã cho có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn.
3) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m-2\right)}{m}\\x_1x_2=\dfrac{m-3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{m}-2\\x_1x_2=1-\dfrac{3}{m}\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{x_1+x_2+2}{4}=\dfrac{1}{m}\\\dfrac{1-x_1x_2}{3}=\dfrac{1}{m}\end{matrix}\right.\) \(\Rightarrow\) 3x1+3x2+4x1x2+2=0.
4) Với 0\(\ne\)m<4 (điều kiện để phương trình có hai nghiệm):
A=x12+x22=(x1+x2)2-2x1x2=\(\left(\dfrac{-2\left(m-2\right)}{m}\right)^2-2.\dfrac{m-3}{m}\)=\(2-\dfrac{10}{m}+\dfrac{16}{m^2}\)=\(\left(\dfrac{4}{m}-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\)\(\ge\dfrac{7}{16}\).
Dấu "=" xảy ra khi x=16/5 (nhận).
Vậy minA=7/16 tại m=16/5.