cho a,b>0 va a.b=1. CM (a+1)(b+1)>=4
cho a,b>0 va a+b=1. CM (a+1/b)^2 +(b+1/a)^2>=25/2
Cho a,b>0 VA a+b=1 chung minh rang (a+1/a)^2+(b+1/b)^2>/25/2
cho a,b,c >0 va abc=1 CM \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}=< 1\)
Xem lại đề đi bạn ơi !
Mk nghĩ đề là : cm 1/2-a + 1/2-b + 1/2-c >= 3
Nếu nói gì sai thì thông cảm nha
cho ba so a, b, c thỏa mãn 0<a<1; 0<b<1;0<c<1 va a+b+c=2
cm \(a^2+b^2+c^2< 2\)
Cho a,b >o va a+b =1 cm :
a) (a+(1/a ))^2 +(b+ (1/b))^2 =>25/2
b ) 1/a^2 +b^2 + 1/ab =>6
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
cho a+d=b+c va a2+d2=b2+c2 (b,d khac 0). cm 4 so a,b,c,d co the lap thanh 1 ti le thuc
a, Cho F(x) = a x+b . Tim a,b biet f(0) = 3 va F(2) =-1
b, Cho F(x) =a x+ b. Tim a,b biet F(1) = -1 va F(-2) = 8
c, Cho F(x) =a x +b .tim a,b biet F(0) = 1 va F(-2) = -9
cho a,b,c,d tm a^2+b^2=1 va a^4/c+b^4/d=1/c+d. cm a^2/c+d/b^2>=2
Cho (a+b+c)^2=a^2+b^2+c^2 va a,b,c khac 0. CM :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Có: (a+b+c)2=a2+b2+c2
=> a2 +b2 +c2 +2(a*b+b*c+c*a)=a2 +b2 +c2
=>2*(a*b+b*c+c*a) = 0
=>a*b+b*c+c*a = 0
=> (a*b+b*c+c*a)/a*b*c = 0 ( cùng chia 2 vế cho a*b*c)
=> (a*b/a*b*c)+(b*c/a*b*c)+(c*a/a*b*c) = 0
=>1/c+1/a+1/b = 0
=>1/a3 +1/b3 +1/c3 =3*1/a*1/b*1/c = 3/a*b*c
z hả? tại mình ko bik cách viết phân số nên bn thg cảm.