Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
leanhduy123
Xem chi tiết
Pham Van Hung
28 tháng 2 2019 lúc 20:53

\(P=\left(\frac{30}{x}+\frac{6x}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)+\frac{4}{5}\left(x+y\right)\)

\(\ge2\sqrt{\frac{30}{x}.\frac{6x}{5}}+2.\sqrt{\frac{y}{5}.\frac{5}{y}}+\frac{4}{5}.10\)

\(=2.6+2.1+8=22\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{30}{x}=\frac{6x}{5}\\\frac{y}{5}=\frac{5}{y}\\x+y=10\end{cases}}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\\x+y=10\end{cases}}\Rightarrow x=y=5\)

Vậy \(P_{min}=22\Leftrightarrow x=y=5\)

leanhduy123
Xem chi tiết
Phan Huy Toàn
Xem chi tiết
Jungkook Joen
Xem chi tiết
Bình Trần Thị
Xem chi tiết

a: \(y=-x^2+2x+3\)

y>0

=>\(-x^2+2x+3>0\)

=>\(x^2-2x-3< 0\)

=>(x-3)(x+1)<0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

=>\(x\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)

=>-1<x<3

\(y=\dfrac{1}{2}x^2+x+4\)

y>0

=>\(\dfrac{1}{2}x^2+x+4>0\)

\(\Leftrightarrow x^2+2x+8>0\)

=>\(x^2+2x+1+7>0\)

=>\(\left(x+1\right)^2+7>0\)(luôn đúng)

b: \(y=-x^2+2x+3< 0\)

=>\(x^2-2x-3>0\)

=>(x-3)(x+1)>0

TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)

=>x>3

TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)

=>x<-1

\(y=\dfrac{1}{2}x^2+x+4\)

\(y< 0\)

=>\(\dfrac{1}{2}x^2+x+4< 0\)

=>\(x^2+2x+8< 0\)

=>(x+1)2+7<0(vô lý)

Vũ Phong
Xem chi tiết
Akai Haruma
29 tháng 11 2023 lúc 10:16

Lời giải:
Vì $ƯCLN(2x+5, 3x+2)=y$

$\Rightarrow 2x+5\vdots y; 3x+2\vdots y$

$\Rightarrow 3(2x+5)-2(3x+2)\vdots y$

$\Rightarrow 11\vdots y\Rightarrow y=1$ hoặc $y=11$

Nếu $y=1$ thì $2x+5\not\vdots 11$

$\Rightarrow 2x-6\not\vdots 11\Rightarrow 2(x-3)\not\vdots 11$

$\Rightarrow x-3\not\vdots 11$

$\Rightarrow x\neq 11k+3$

Vậy với mọi $y=1$ thì $x>10; x\neq 11k+3$ với $k$ là số tự nhiên bất kỳ.

Nếu $y=11$

$\Rightarrow 2x+5\vdots 11$

$\Rightarrow 2x-6\vdots 11\Rightarrow 2(x-3)\vdots 11\Rightarrow x-3\vdots 11$

$\Rightarrow x=11k+3$

Vì $x>10$ nên $k\geq 1$

Vậy với $y=11$ thì $x=11k+3$ với $k$ là stn $\geq 1$

Bộ tộc họ Lê
Xem chi tiết
Giang Đoàn
Xem chi tiết
Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3