tìm x theo a biết : x2-2ax-3a2-x+11a-6=0
a)Tìm giá trị của biểu thức A=xnxn + 1xn1xn biết x2 +x+1=0
b) Rút gọn biểu thức: N=x|x−2|x2+8x−20+12x−3x|x−2|x2+8x−20+12x−3
c)Tìm x,y biết: x2+y2+1x2+1y2=4x2+y2+1x2+1y2=4
d)Trong 3 số x,y,z có 1 số dương,1 số âm và 1 số 0. Hỏi mỗi số đó thuộc loại nào biết: |x|=y3−y2zy3−y2z
e)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1 , c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
g)Tìm số nguyên dương a,b,c thỏa mãn: a3+3a2+5=5ba3+3a2+5=5b và a+3=5^{c}
Cho phương trình: x^2 - 2ax + 2a + 2 = 0, a là tham số. Tìm giá trị của a để PT có 2 nghiệm x1, x2 thỏa mãn x1 = x2^2
Xác định hệ số a biết rằng:
1,P(x)=2ax+a-6 có nghiệm x=1
2,P(x)=ax+a+5 có nghiệm x=-1
3,P(x)=x^2+2ax+6 có nghiệm là 0 và 2
1,P(x)=2ax+a-6 có nghiệm x=1
Xét x=1
=> P(1)=2a+a-6=0
=> 3a=6 <=> a=2
2,P(x)=ax+a+5 có nghiệm x=-1
Xét x=-1
=> P(-1)=-a+a+5=0
=> a là số bất kì
câu 3 nghiệm bằng 0 thì đa thức P không có nghĩa
Xét phương trình 2 a x - x 2 = 3 x ; a ∈ ℤ ngoài nghiệm x=0 ra thì:
A. Có nghiệm x = a - log 2 3
B. Có nghiệm x = a - log 2 1 3
C. Có nghiệm x = a - log 3 2
D. Không có nghiệm khác
Cho đa thức Q(x)=x²-2ax. Tìm hệ số a biết Q(2)+Q(-1)=0
Do \(Q_{(2)} + Q_{(-1)} = 0\)
\(\Rightarrow 2^2 - 2 . a . 2 + ( -1 )^2 - 2 . a . ( -1 ) = 0\)
\(\Rightarrow 4 - 4a + 1 + 2a=0\)
\(\Rightarrow ( 4 + 1 ) + ( -4a + 2a ) = 0\)
\(\Rightarrow 5 - 2a = 0\)
\(\Rightarrow a = \dfrac{5}{2}\)
Vậy \(a = \dfrac{5}{2}\)
Cho đa thức P ( x ) = x 2 + 2 a x . Biết 2P(1) = P(3). Tính a?
A. x = 7 2
B. x = - 7 2
C. x = 5 2
D. x = - 5 2
Chọn B
Ta có P(1) = 1 + 2a, P(3) = 9 + 6a.
Vì 2P(1) = P(3) ⇒ 2(1 + 2a) = 9 + 6a ⇒ 2 + 4a = 9 + 6a ⇒ a = -7/2.
Bài 2: Tìm x , biết
a) 6x3 + x2 : 2x - 3x + 2 = 0 b) 5x4 - 3x2 : x2 - x(5x + 6) = 0
Bạn xem đã viết đúng đề chưa vậy?
Bài 2: Tìm x , biết
a) 6x3 + x2 : 2x - 3x + 2 = 0 b) 5x4 - 3x2 : x2 - x(5x + 6) = 0
Tìm số nguyên x,y biết:
a)2xy-2x+3y=-9
b)(x+1)2.(y-3)=-4
c)(x+3)2+(2y-1)2<44
d)(x2-1)(x2-6)<0
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. MỌI NGƯỜI GIẢI THEO CÁCH HỌC CỦA TOÁN 6. MÌNH CẢM ƠN MỌI NGƯỜI
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
c) \(\left(x+3\right)^2+\left(2y-1\right)^2< 44\)
\(\Leftrightarrow\left(x+3\right)^2< 44-\left(2y-1\right)^2< 44\) (do \(-\left(2y-1\right)^2\le0\)) (1)
mà (x + 3)2 là số chính phương
Kết hợp (1) ta được \(\left(x+3\right)^2\le36\)
\(\Leftrightarrow\left(x+3\right)^2\le6^2\Leftrightarrow\left(x+3\right)^2\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{0;1;4\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{9;16\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25\right\}\)
Với (x + 3)2 = 25 ta được (2y - 1)2 \(\in\left\{0;1;4;9;16\right\}\)
Với (x + 3)2 = 36 ta được (2y - 1)2 \(\in\left\{0;1;4;9\right\}\)