Cho tam giác ABC Kẻ AH vuông góc với BC tại H sao cho H nằm giữa B và C. Biết AC và AB = 5 cm AC = 4 cm BC = 9 cm .Tính độ dài của AB
Cho tam giác ABC từ A Kẻ AH vuông góc với BC (H nằm giữa B và C) biết AC = 12 cm ah = 60/13 cm BH = 25/13 cm
a) tính AB;BC
b) tam giác ABC có phải là tam giác vuông không? Vì sao?
c)Kẻ HM vuông góc với AC tại M. Tính độ dài HM
Mọi người ơi, giúp mik trình bày bài này điiiiiiiii
Cho tam giác ABC, kẻ AH vuông góc vs BC tại H, (H nằm giữa B và C). Hãy tính các cạnh AB,AC và chứng minh tam giác ABC vuông tại A nếu biết:
AH= 12 cm, BH=9 cm, CH=16 cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+16^2=400\)
hay AC=20cm
Vậy: AB=15cm; AC=20cm
Ta có: BH+CH=BC(H nằm giữa B và C)
hay BC=9+16=25cm
Ta có: \(AB^2+AC^2=15^2+20^2=625\)
\(BC^2=25^2=625\)
Do đó: \(BC^2=AB^2+AC^2\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Cho tam giác ABC cân ở A có AB =AC=5cm; kẻ AH vuông góc với BC(H thuộc BC)
a) cm BH=HC và BAH=CAH
b) Tính độ dài BH BIẾT AH=4 cm
c) Kẻ HD vuông góc với AB ( d thuộc AB), kẻ EH vuông góc với AC(E thuộc AC)
d) Tam giác ADE Là tam giác gì? VÌ sao
a)
xét 2 tam giác vuông ABH và ACH có:
AB=AC(gt)
AH(chung)
suy ra tam giác ABH=ACH(CH-CGV)
suy ra BH=CH và BAH=CAH
b)
\(BH^2=AB^2-AH^2=5^2-4^2=25-26=9\)
\(BH=\sqrt{9}=3\left(cm\right)\)
Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H BC)
a) Chứng minh : HB = HC và =
b)Tính độ dài AH ?
c)Kẻ HD vuông góc AB ( DAB), kẻ HE vuông góc với AC(EAC). Chứng minh : DE//BC
Làm hộ iem câu c ;-;
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(gt)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng)
Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
b) Ta có: HB=HC(cmt)
mà HB+HC=BC(H nằm giữa B và C)
nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=AB^2-HB^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
cho tam giác abc cân tại a xo ab=ac=5 cm, bc=8cm. kẻ ah vuông góc vs bc ( h thuộc bc )
1) cm hb=hc
2)tính độ dài ah
3) kẻ hd thuộc ab
kẻ HE vuông góc vs AC
cm tam giác HDE cân
4) từ b,c kẻ các đường vuông góc vs ab và ac chúng cắt nhau tại M. cm 3 điểm a,h, m thẳng hàng
a)xét tam giác vuông ABH và tam giác vuông ACH có
cạnh AB chung
AB=AC
do đó tam giác vuông ABH = tam giác vuông ACH (cạnh huyền - cạnh góc vuông)
=>HB=HC
b) ta có
HC=HB
mà BC= 8
=> HC=4
áp dụng định lí Py-ta-go vào tam giác vuông AHC có
AC2 . HC2 =AH2
hay AH2 = 52 . 42=400
=>AH=20
Cho tam giác ABC cân tại A có AB = AC = 5 cm, BC = 8 cm, Kẻ AH vuông góc với BC (H thuộc BC) Chứng minh: a) HB = HC và góc BAH bằng góc CAH. b) Tính độ dài AH. c) kẻ HD vuông góc với AB, HE vuông góc với AC (D thuộc AB, E thuộc AC).Chứng minh tam giác HDE cân
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
cho tam giác ABC có góc A > 90 độ. Kẻ DA vuông góc AB và DA=AB(tia AD nằm giữa 2 tia AB và AC). Kẻ EA vuông góc AC và AE=AC(tia AE nằm giữa 2 tia AB và AC). Kẻ AH vuông góc BC(H thuộc BC) và kéo dài cắt DE tại N. CM: MD=ME
Cho tam giác ABC có BC = 52 cm, AB = 20 cm, AC = 48 cm.
a. Tam giác ABC có vuông không?
b. Kẻ AH vuông góc với BC tại H. Tính độ dài AH.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
a. Ta có: BC2=AB2+AC2, suy ra tam giác ABC vuông tại A.
b. Ta có: AB.AC=AH.BC, suy ra AH=AB.AC/BC=20.48/52=240/13.
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK