cho tam giác ABC vẽ BH vuông góc AC,H thuộc AC. Gọi M là trung điểm AC biết gióc ABH= góc HBM=góc MBC.Tính các góc của tam giác ABC
Cho tam giác ABC, I là giao điểm của phân giác các góc B và C, M là trung điểm BC. Biết góc BIM 90 độ, BI=2IM
a,Tính góc BAC
b,Vẽ IH vuông góc AC (H thuộc AC). Chứng minh BA= 3IH
Cho tam giác ABC vuông tại A . Kẻ phân giác BH (H thuộc AC) . Kẻ MH vuông góc BC (M thuộc BC ) . Gọi N là giao điểm của AD với MH
a, Tam giác ABH = tam giác MBH
b, BH vuông góc với AM
c, AM song song với CN
xét ΔABH và ΔMBH có:
\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o
BH là cạnh chung
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))
⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)
⇒BM=AB(2 cạnh tương ứng)
⇒ΔABM cân tại B
⇒\(\widehat{ABM}\)=\(\widehat{MAB}\)
gọi I là giao điểm của AM và BH
xét ΔMBI và ΔABI có
AB=BM(ΔABH=ΔMBH)
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))
\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)
⇒ΔMBI=ΔABI (g-c-g)
⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)
Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)
Từ (1) và (2) ⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o
⇒BH⊥AM (Điều phải chứng minh)
xét ΔCMH và ΔNAH có:
\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o
\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)
AH=HM(ΔABH=ΔMBH)
⇒ΔCMH=ΔNAH(g-c-g)
⇒HC=HN(2 cạnh tương ứng)
⇒ΔCHN cân tại H
\(\widehat{NCH}\)=\(\widehat{CNH}\)
vì ΔABH=ΔMBH
⇒AH=HM(2 cạnh tương ứng)
⇒ΔAHM cân tại H
⇒\(\widehat{HMA}\)=\(\widehat{HAM}\)
xét ΔNHC và ΔMHA có
\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)
⇒\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)
Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)
⇒\(\widehat{HMA}\)=\(\widehat{NCH}\)
⇒AM // CN (điều phải chứng minh)
Cho tam giác ABC, góc A=90 độ, đường cao AH, vẽ HD vuông góc AB, HE vuông góc AC, CD thuộc AB, E thuộc AC. CMR
a)góc C= góc ADE
b)gọi M là trung điểm của BC.CMR :AM vuông góc DE
Cho tam giác ABC có góc A= 60 độ, AB< AC , đường cao BH ( H thuộc AC)
a) So sánh góc ABC và góc ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A (D thuộc BC). Vẽ BI vuông góc AD tại I. CMR tam giác AIB= tam giác BHA
c) Tia BI cắt AC ở E. CMR tam giác ABE đều
d) CMR DC> DB
Cho tam giác ABC cân tại A Biết góc BAC =50° a) Tính các góc còn lại của tam giác ABC b) Gọi M là trung điểm của BC. Chứng minh AM vuông góc BC c) Trên tia đối của tia MA lấy điểm D sao cho MD =MA. Chứng minh AC//BD
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
Cho tam giác ABC vuông tại A. Gọi M là trung điểm BC. Qua M kẻ ME vuông góc với AB (E thuộc AB), MF vuông góc với AC (F thuộc AC):
a) Chứng minh tứ giác AEMF là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua F. Tứ giác MANC là hình gì? Tại sao?
c) Tìm điều kiện của tam giác ABC để các tứ giác AEMF, MANC là hình vuông?
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
1,cho tam giac nhon ABC kẻ AC vuông góc BC , kẻ BE vuông góc AC gọi H là giao điểm của AD và BE biết rằng AH=BC , tinh góc BAC
2, cho tam giác ABC vuông tại A kẻ AH vuông góc BC tia phân giác cua góc HAC cắt BC ở D . CMR tam giác ABC là tam giác cân
Cho tam giác ABC cân tại A. Kẻ BD vuông góc AC (D thuộc AC ), CE vuông góc AB ( E thuộc AB ). BD và CE cắt nhau tại H
a) Chứng minh tam giác BEC và tam giác CDB
b) Chứng minh tam giác BHC là tam giác cân
c) Gọi M là giao điểm của AH và BC. Chứng minh AM là đường trung trực của BC
P/s câu a và b với vẽ hình mình đã biết làm rồi còn câu c mình bí.
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
Bài 5: Cho tam giác ABC vuông tại A (AB < AC) .Gọi M lả trung điểm của BC,vẽ MD vuông góc AB tại D,vẽ ME vuông góc AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật và tứ giác CMDE là hình bình hành.
b) Gọi F là điểm đối xứng của điểm M qua E.Chứng minh tứ giác AMCF là hình thoi.
c) Vẽ AH vuông góc BC tại H.Chứng minh DH vuông với HE.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi