Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hụt Hẫng
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Miyano Shiho
11 tháng 4 2016 lúc 17:08

p=3. 

 

Dragon Ball
Xem chi tiết
Đinh Nguyễn Anh Thư
Xem chi tiết
✦๖ۣۜAugųsť❦❄
7 tháng 5 2021 lúc 20:32

câu 2:

p là 1 số nguyên tố (p>3),

do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2

nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.

câu 3:

Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)

Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số

Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2 

Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)

=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số 

Khách vãng lai đã xóa
Nguyễn Đỗ Khánh Ly
7 tháng 5 2021 lúc 20:46

Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là

3k + 1 hoặc 3k + 2

ta có

p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)

vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số  (1)

nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)

vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số  (2)

từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS

Vậy .................

Khách vãng lai đã xóa
Nguyễn Nguyệt Ánh
Xem chi tiết
 Thiên Nhi ♥.♥
2 tháng 8 2019 lúc 15:14

Ta có : p là số nguyên tố , p > 3

=> p có dạng 3k+1 ( k thuộc N )

​​             hoặc 3k +2 

Xét p = 3k+1 ta có : 5p+1 = 5( 3k+1 ) +1 = 15k +5 +1= 15k +6 chia hết cho 3 ( Loại)

Xét p = 3k+2 ta có : 5p+1 = 5(3k+2) +1= 15k +10+1 = 15k + 11

                                7p +1 = 7(3k+2) +1 = 21k +14+1 = 21k + 15 chia hết cho 3 

=> 7p+1 là hợp số (Thỏa mãn )

Vậy với p là số nguyên tố lớn hơn 3 và 5p+1 là số nguyên tố thì 7p +1 là hợp số 

Tran Le Khanh Linh
7 tháng 6 2020 lúc 8:02

Vì p là số nguyên tố > 3 nên có dạng 3k+1; 3k+2 (k\(\inℕ\))

Thay p=3k+1 vào 5p+1 ta có: 5(3k+1)+1=15k+6 là hợp số (loại)

Thay p=3k+2 vào 5p+2 ta có: 5(3k+2)+1=15k+11 là số nguyên tố (chọn)

Với p=3k+2 ta có: 7p+1=7(3k+2)+1=21k+15 là hợp số

=> đpcm

Khách vãng lai đã xóa
lê thanh
Xem chi tiết
Phan Gia Huy
7 tháng 2 2020 lúc 9:46

\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)

\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)

P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)

Đến đây làm nốt

Khách vãng lai đã xóa
Nguyễn Thị Chinh
Xem chi tiết
Yến Nhi Lê Thị
Xem chi tiết
truong tien phuong
21 tháng 12 2016 lúc 10:58

Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)

Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.

=> p+4 là hợp số ( trái với đề, loại)

vậy p = 3k+1.

=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.

=> 8p+1 là hợp số.

Vậy 8p+1 là hợp số(đpcm)

Đào Xuân Trí
Xem chi tiết