Cho p và 3p-1 là các số nguyên tố.CMR 8p+1 là hợp số
Bài 1:Cho p và 8p-1 là các số nguyên tố.CMR:8p+1 là hợp số
Bài 2:CMR mọi số nguyên tố lớn hơn 2 đều có dạng 4k+1 hoặc 4k-1
Bài 3:1 số nguyên tố p chia cho 42 có số dư là r(r là hợp số).Tìm r???
Cho p và 8p-1 là các số nguyên tố.CMR: 8p+1 là hợp số.
Toán 6 các bạn ak!!! Giúp mk vs nhoa....
8p+1 là số nguyên tố.CMR:4p-1 là hợp số
câu 2:
p là 1 số nguyên tố (p>3),
do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
câu 3:
Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)
Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số
Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2
Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)
=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số
Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là
3k + 1 hoặc 3k + 2
ta có
p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)
vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số (1)
nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)
vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số (2)
từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS
Vậy .................
Cho p là số nguyên tố>3 và 5p+1 là số nguyên tố.CMR 7p+1 là hợp số
Ta có : p là số nguyên tố , p > 3
=> p có dạng 3k+1 ( k thuộc N )
hoặc 3k +2
Xét p = 3k+1 ta có : 5p+1 = 5( 3k+1 ) +1 = 15k +5 +1= 15k +6 chia hết cho 3 ( Loại)
Xét p = 3k+2 ta có : 5p+1 = 5(3k+2) +1= 15k +10+1 = 15k + 11
7p +1 = 7(3k+2) +1 = 21k +14+1 = 21k + 15 chia hết cho 3
=> 7p+1 là hợp số (Thỏa mãn )
Vậy với p là số nguyên tố lớn hơn 3 và 5p+1 là số nguyên tố thì 7p +1 là hợp số
Vì p là số nguyên tố > 3 nên có dạng 3k+1; 3k+2 (k\(\inℕ\))
Thay p=3k+1 vào 5p+1 ta có: 5(3k+1)+1=15k+6 là hợp số (loại)
Thay p=3k+2 vào 5p+2 ta có: 5(3k+2)+1=15k+11 là số nguyên tố (chọn)
Với p=3k+2 ta có: 7p+1=7(3k+2)+1=21k+15 là hợp số
=> đpcm
Cho P và 8P2 + 1 là các số nguyên tố
CMR: 3P2 +5 là số nguyên tố
\(P=2\Rightarrow8P^2+1=33\left(LHS\right)\)
\(P=3\Rightarrow8P^2+1=73;3P^2+5=32\left(LHS\right)\)
P là số nguyên tố lớn hơn 3 có dạng \(3k+1;3k+2\left(k\inℕ^∗\right)\)
Đến đây làm nốt
1.tìm tất cả những giá trị n thuoocjN sao cho 3^n+4n+1 chia ết cho 8
2.cho p và 8p^2+1 là những số nguyên tố.CMR 8p^2+2p+1cungx là 1 số nguyên tố
3.tìm tất cả những số nguyên tố có dạng (2^(2^n)) +5 n thuộc N
4.hãy tìm số ngto p sao cho p^2 là uoc của (5^(p^2)) +1
a. cho p và p + 4 là các số nguyên tố lớn hơn 3. Cm : p + 8 là hợp số
b. Cho p và 8p - 1 là các số nguyên tố. Cm : 8p + 1 là hợp số
Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)
Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.
=> p+4 là hợp số ( trái với đề, loại)
vậy p = 3k+1.
=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.
=> 8p+1 là hợp số.
Vậy 8p+1 là hợp số(đpcm)
Giúp mình với!
1.CMR nếu 8p-1 và p là số nguyên tố thì 8p+1 là hợp số.
2.Tìm tất cả các số nguyên tố p và q sao cho 7p+q và pq+11 đều là số nguyên tố.
3.Tìm số nguyên tố p sao cho:
a) 3p+5 là số nguyên tố.
b) p+8 và p+10 đều là số nguyên tố.
4.CMR 1994100-1 và 1994100+1 không thể đồng thời là số nguyên tố.