* Cho tam giác nhọn ABC. CM: \(BC^2=AB^2+AC^2-2AB.AC.cosA\)
Cho tam giác ABC nhọn. Chứng minh rằng
\(BC^2\)=\(AB^2+AC^2-2AB.AC.cosA\) (định lí cosin)
Cho tam giác ABC nhọn. Chứng minh rằng
\(BC^2\)=\(AB^2+AC^2-2AB.AC.cosA\) (định lí cosin)
Kẻ đường cao \(BH\).
Xét tam giác \(ABH\)vuông tại \(H\):
\(BH^2=AB^2-AH^2\)
Xét tam giác \(BCH\)vuông tại \(H\):
\(BH^2=BC^2-CH^2=BC^2-\left(AC-AH\right)^2\)
\(=BC^2-AC^2+2AC.AH-AH^2\)
\(\Rightarrow BC^2-AC^2+2AC.AH-AH^2=AB^2-AH^2\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2AC.AH=AB^2+AC^2-2AC.ABcosA\)
1.Cho tam giác ABC nhọn, vẽ đường cao AH. Tính chu vu của tam giác ABC, biết AC = 13cm, AH = 12 cm, BH = 9cm
2. Cho tam giác ABC, góc A = 90 độ. BIết AB + AC = 49 cm; AB - AC = 7cm. Tínnh BC
3. Cho tam giác ABC, AB = AC =17 cm. Kẻ BD vuông góc với AC. Tính BC biết BD = 15cm
1. cho tam giác ABC có góc B,C nhọn. Vẽ AH vuông góc với BC tại H. cm: AB+AC > 2AH
2. cho tam giác ABC nhọn. Vẽ BC vuông góc với AC tại D, vẽ CE vuông góc với AB tại E. cm: BC+CE < AB+AC
giải giúp em với!!!! "_" "_" "_"
Cho tam giác ABC nhọn. Cm: \(BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot\cos A\)
Cho tam giác ABC nhọn có AB= 2 cm; AC= 3,5 cm. Trên tia AB và AC lần lượt lấy M và N sao cho AM= 7 cm, AN = 4 cm
a) C/m tam giác ABC đồng dạng với tam giác ANM
b) Cho BC = 4,5 cm. Tính độ dài đoạn thẳng MN
a: Xét ΔABC và ΔANM có
AB/AN=AC/AM
góc A chung
=>ΔABC đồng dạng với ΔANM
b: ΔABC đồng dạng với ΔANM
=>BC/NM=AB/AN
=>4,5/NM=2/4=1/2
=>NM=9cm
Cho tam giác ABC nhọn. AB =4 cm; BC = 6 cm. Hình chữ nhật DEFG nội tiếp tam giác với D thuộc AB; E thuộc AC; F, G thuộc BC. chứng minh: diện tích tứ giác DEFG < 6 cm2
AI HELP MIK CÂU NÀY VS
CHO TAM GIÁC ABC NHỌN (AB<AC), lấy M thuộc AB,N thuộc AC sao cho MN= BC,MN=BC/2, . Cm M,N lần lượt là trung điểm của AB,AC
CHO TAM GIÁC ABC NHỌN (AB<AC), lấy M thuộc AB,N thuộc AC sao cho MN// BC,MN=BC/2, . Cm M,N lần lượt là trung điểm của AB,AC
Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{MN}{BC}\)
\(\Leftrightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{1}{2}\)
Suy ra: M là trung điểm của AB và N là trung điểm của AC
CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN CÓ AB<AC. BA ĐG PHÂN GIÁC TRONG CỦA TAM GIÁC ABC ĐỒNG QUI TẠI I. ĐG THẲNG VUÔNG GÓC VỚI AI TAI I CẮT CẠNH AB Ở M. LẤY ĐIỂM N TRÊN CẠNH AC SAO CHO AM=AN.
A) CM M, I, N THẲNG HÀNG
B) CM TAM GIÁC MBI ĐỒNG DẠNG VỚI TAM GIÁC NIC
C) CM \(AB\cdot CI^2+BC\cdot AI^2+CA\cdot BI^2=AB\cdot BC\cdot CA\)