Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 3 2021 lúc 23:05

b) Phương trình hoành độ giao điểm của (P) và (d) là: 

\(x^2=x+2\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow x^2-2x+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Thay x=-1 vào (P), ta được:

\(y=\left(-1\right)^2=1\)

Vậy: A(2;4) và B(-1;1)

Nguyễn Mạnh Trung
Xem chi tiết
Nguyễn Vy
Xem chi tiết
Trần Thị Thảo Ngọc
Xem chi tiết
virginity style
Xem chi tiết
vy phan ngọc vy
Xem chi tiết
Anh Phạm
Xem chi tiết
YangSu
25 tháng 4 2022 lúc 19:10

\(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)

\(\Rightarrow\dfrac{1}{2}x^2+x-\dfrac{3}{2}=0\)

Tới đây dùng \(\Delta\) chứ, nếu bn lấy \(\dfrac{1}{2}\) đặt lm nhân tử chung thì ở đây hơi vô lí 

YangSu
25 tháng 4 2022 lúc 19:15

\(\Delta=b^2-4ac=1-4.\dfrac{1}{2}.\left(-\dfrac{3}{2}\right)=4>0\)

\(\Rightarrow\)Pt có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-1+2}{1}=1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-1-2}{1}=-3\end{matrix}\right.\)

Thay \(x_1=1\) vào \(y=\dfrac{1}{2}x^2\Rightarrow y=\dfrac{1}{2}\)

Thay \(x_2=-3\) vào \(y=-x+\dfrac{3}{2}\Rightarrow y=\dfrac{9}{2}\)

danh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 21:44

b: Phương trình hoành độ giao điểm là:

\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)

\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào (P), ta được:

\(y=\dfrac{-2^2}{2}=-2\)

Thay x=-1 vào (P), ta được:

\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)

Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:27

a. Em tự giải

b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)

Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)

c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.

Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)

Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)

Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)

Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)

Phương trình hoành độ giao điểm \(d_1\) và (P):

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)

Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép

\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)

Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)

Từ C kẻ \(CK\perp d\)

Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)

\(\Rightarrow CK=DH\)

Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)

\(\Rightarrow MH_{max}=CK\) khi M trùng C

Hay \(M\left(1;\dfrac{1}{4}\right)\)

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:27

loading...

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 17:59

Ủa câu c là M hay C em nhỉ?