CMR: \(\frac{1x3x5x7x9x...x39}{21x22x23x...x40}\)= \(\frac{1}{2^{20}}\)
Chứng minh rằng :
a) 1x3x5x....x39/21x22x23x....x40 = 1/2 mũ 20
b) 1x3x5x....x(2n-1)/(n+1)x(n+2)x....x2n = 1/2 mũ n (n e N* )
mk cần gấp lắm
a) Nhân cả tử và mẫu với 2.4.6...40 ta được :
\(\frac{1.3.5...39}{21.22.23...40}\)=\(\frac{\left(1.3.5...39\right)\left(2.4.6..40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}\)
= \(\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}\)
=\(\frac{1}{2^{20}}\)
b) Nhân cả tử và mẫu với 2.4.6...2n rồi biến đổi như câu a.
Rút gọn phân số :
1x3x5x7x...x39/21x22x23x...x46 help me , chìu mình đi học
CMR:
1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{13}+...+\frac{1}{20}\)
Ta có: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)=\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)=\)
= 1/11 + 1/12 +1/13+...+1/20 (đpcm)
Bài 1: CMR:
Bài 2: CMR:
Bài 1:
Áp dụng bất đẳng thức AM-MG ta có:
\(\dfrac{a+b}{2}\ge\sqrt{ab};\dfrac{a+c}{2}\ge\sqrt{ac};\dfrac{b+c}{2}\ge\sqrt{bc}\)
\(\Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow\dfrac{\left(a+b+c\right).2}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)
Chúc bạn học tốt!!!
Bài 1:(ĐK: a,b,c cùng dấu)
BĐT(1)<=>\(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
<=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\), đúng
=> BĐT cần CM đúng.
Dấu "=" xảy ra khi và chỉ khi a=b=c.
Bài 2:(ĐK: a,b,c cùng dấu và đồng thời khác 0)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{a}=x\\\dfrac{1}{b}=y\\\dfrac{1}{c}=z\end{matrix}\right.\)
BĐT(2)<=> \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\), luông đúng do BĐT từ bài 1.
=> BĐT cần CM đúng.
Dấu "=" xảy ra khi và chỉ khi a=b=c.
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ .........+ \(\frac{1}{19}-\frac{1}{20}\)
CMR A = \(\frac{1}{11}+\frac{1}{12}\)+ ......... + \(\frac{1}{20}\)
Bài 1;Cho S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+.....................+\frac{1}{2012!}\)CMR: S <2
Bài 2:CMR \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...........+\frac{99}{100!}<\frac{1}{9!}\)
Bài 3: Cho E= \(1+\frac{1}{2}+\frac{1}{3}+...........+\frac{1}{20}\)CMR: E không phải là số tự nhiên
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{20^2}\)
cmr \(\frac{19}{42}< A< \frac{19}{22}\)
Ta có A<1/1.2+1/2.3+1/3.4+....+1/19.20
A<1-1/2=1/2-1/3+..+1/19-1/20
A<1-1/20=19/20
Ta có 19/20<19/22(so sánh 2 phân số cùng tử)=>A<19/22 (1)
Ta có A>1/2.3+1/3.4+...+1/20.21
A>1/2-1/3+1/3-1/4+........+1/20-1/21
A>1/2-1/21=20/42
Ta có 20/42>19/42(so sánh 2 phân số cùng mẫu)=>A>19/42 (2)
Từ (1) và (2) =>19/42<A<19/22
CMR: \(14< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}....\frac{200}{199}< 20\)
Gải phương trình
\(y\frac{xy}{x40}+\frac{y}{35}=5\)