Bài 1:
Áp dụng bất đẳng thức AM-MG ta có:
\(\dfrac{a+b}{2}\ge\sqrt{ab};\dfrac{a+c}{2}\ge\sqrt{ac};\dfrac{b+c}{2}\ge\sqrt{bc}\)
\(\Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow\dfrac{\left(a+b+c\right).2}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (đpcm)
Chúc bạn học tốt!!!
Bài 1:(ĐK: a,b,c cùng dấu)
BĐT(1)<=>\(2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)
<=>\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\), đúng
=> BĐT cần CM đúng.
Dấu "=" xảy ra khi và chỉ khi a=b=c.
Bài 2:(ĐK: a,b,c cùng dấu và đồng thời khác 0)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{a}=x\\\dfrac{1}{b}=y\\\dfrac{1}{c}=z\end{matrix}\right.\)
BĐT(2)<=> \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\), luông đúng do BĐT từ bài 1.
=> BĐT cần CM đúng.
Dấu "=" xảy ra khi và chỉ khi a=b=c.