cho tam giác ABC cân tại A trên cạnh BC lấy hai điểm B và E sao cho BD = CE (BD<BC/2) đường thẳng kẻ từ vuông góc BC cắt AD ở M
a) tam giác MBD = tam giác NCE
b) ME = ND
. Cho tam giác ABC cân ở A , trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD= AE ; BD cắt CE tại G . Chứng minh rằng:
a) BD =CE;
b) tam giác GDE cân;
c) Gọi M là trung điểm của BC . Chứng minh ba điểm A ,G ,M thẳng hàng.
d) Cho AB=13 cm, MB=5 cm . Tính độ dài đoạn AM
a: Xét ΔBEC và ΔCDB có
BE=CD
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
Do đó: ΔBEC=ΔCDB
Suy ra: CE=DB
b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)
nên ΔGBC cân tại G
=>GB=GC
Ta có: GB+GD=BD
GE+GC=CE
mà BD=CE
và GB=GC
nên GD=GE
hay ΔGDE cân tại G
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
nên G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,G,M thẳng hàng
cho tam giác abc cân tại a trên cạnh bc lấy điểm d và e sao cho bd=ce=de chứng minh tam giác mbd bằng tam giác nce
Góc " M , N " ở đâu ra đấy ạ?-
Đọc mãi vẫn chx xác nhận được " M , N " ở đâu ra=))-
Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho BD=CE. Chứng minh DE//BC
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác abc cân tại a, trên cạnh ab lấy điểm d, trên tia đối của tia ca lấy điểm e sao cho bd=ce. de cắt bc tại i, trên tia đối của tia BC lấy điểm F sao cho BF=CI.
A) Chứng minh tam giác FDI cân và I là trung điểm của DE.
B)Trên cạnh AC lấy điểm M sao cho AM=AD.CHứng minh DM//BC
C)Gọi N là trung điểm của BC.Chứng minh AN là đường trung trực của BC.
cho tam giác ABC cân tại A ( góc A = 90 độ). Trên cạnh AB lấy điểm E trên cạnh Ac lấy điểm D sao cho AD= AE. Gọi H là gia điểm của BD và CE. Chứng mình:
a) tam giác ABD= tam giác ACE
b) tam giác HBC là tam giác cân
c)BD+CE chia 2> CB- CD
giúp mik nhanh vs
Cho tam giác ABC cân tại A, góc A=100 độ. Lấy điểm D và E trên cạnh BC sao cho BD=BA,CE=CA. ? góc DAE
ΔABD cân tại B có = 50º nên = 70º
ΔACE cân tại C có = 50º nên = 70º
Answer:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow100^o+\widehat{C}+\widehat{B}=180^o\)
\(\Rightarrow2\widehat{B}=80^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=40^o\)
Ta có: Tam giác ACE cân tại C
Mà: \(\widehat{A}+\widehat{C}+\widehat{E}=180^o\)
\(\Rightarrow2\widehat{E}+40^o=180^o\)
\(\Rightarrow2\widehat{E}=140^o\)
\(\Rightarrow\widehat{E}=70^o\) (1)
Ta có: Tam giác ABD cân tại B
Mà: \(\widehat{A}+\widehat{B}+\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}+40^o=180^o\)
\(\Rightarrow2\widehat{D}=140^o\)
\(\Rightarrow\widehat{D}=70^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A}+\widehat{E}+\widehat{D}=180^o\)
\(\Rightarrow\widehat{A}+2.70^o=180^o\)
\(\Rightarrow\widehat{A}+140^o=180^o\)
\(\Rightarrow\widehat{A}=40^o\)
Vậy \(\widehat{DAE}=40^o\)