Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 2 2022 lúc 18:17

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)

Rosie
Xem chi tiết
Akai Haruma
28 tháng 5 2022 lúc 11:26

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

hong nguyen
Xem chi tiết
Dương Thiên Thanh
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Minh Hiếu
22 tháng 11 2023 lúc 21:23

Ta có:

\(x^2+1=x^2+xy+yz+zx\)

           \(=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(x+z\right)\)

Tương tự:

\(\left\{{}\begin{matrix}y^2+1=\left(y+z\right)\left(y+x\right)\\z^2+1=\left(z+y\right)\left(z+x\right)\end{matrix}\right.\)

\(A=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(y+z\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\dfrac{\left(z+x\right)\left(y+z\right)\left(x+y\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

\(=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

TH1: x,y,z <0

\(A=-x\left(y+z\right)-y\left(z+x\right)-z\left(x+y\right)=-2\)

TH2: x,y,z>0

\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\)

Lê Song Phương
22 tháng 11 2023 lúc 21:35

Ta có \(1+z^2=xy+yz+zx+z^2\)

\(=y\left(x+z\right)+z\left(x+z\right)\)

\(=\left(x+z\right)\left(y+z\right)\)

CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)

Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)

 Tương tự như thế, ta được

\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)

 Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.

Tô Mì
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Trần Minh Hoàng
19 tháng 12 2020 lúc 16:09

Từ \(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) ta có:

\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\).

Không mất tính tổng quát, giả sử x + y = 0

\(\Leftrightarrow x=-y\)

\(\Leftrightarrow x^3=-y^3\).

Kết hợp với \(x^3+y^3+z^3=1\) ta có \(z^3=1\Leftrightarrow z=1\).

Vậy \(P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{1}=1\).

 

 

Ngọc Hiền
Xem chi tiết
Neet
24 tháng 4 2017 lúc 13:36

ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)

đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)

ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)

Áp dụng bất đẳng thức cauchy:

\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)

tương tự với các phân thức còn lại ta có:

\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

hay \(x=y=z=\sqrt{3}\)

Hung nguyen
24 tháng 4 2017 lúc 13:50

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành

Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)

Ta có:

\(a^2+b^2+c^2=1\)

\(\Rightarrow a^2+b^2=1-c^2\)

\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)

Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)

\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)

\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)

\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)

Lightning Farron
24 tháng 4 2017 lúc 18:21

Chuẩn hóa chuẩn hóa, thuần nhất như sau :grinder:

Dự đoán dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\) ta tìm được \(P=\dfrac{3\sqrt{3}}{2}\)

Ta chứng minh nó là GTNN của \(P\)

\(\LeftrightarrowΣ\dfrac{y^2z^2}{x\left(y^2+z^2\right)}\ge\dfrac{3}{2}\sqrt{\dfrac{3}{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}}\)

\(\LeftrightarrowΣ\dfrac{y^3z^3}{y^2+z^2}\ge\dfrac{3}{2}\sqrt{\dfrac{3x^4y^4z^4}{x^2y^2+x^2z^2+y^2z^2}}\). Cho \(\left(yz;xz;xy\right)\rightarrow\left(a;b;c\right)\)

Khi đó ta cần chứng minh \(Σ\dfrac{a^3}{\dfrac{ac}{b}+\dfrac{ab}{c}}\ge\dfrac{3}{2}\sqrt{\dfrac{3a^2b^2c^2}{a^2+b^2+c^2}}\)

\(\LeftrightarrowΣ\dfrac{a^2}{b^2+c^2}\ge\dfrac{3}{2}\sqrt{\dfrac{3}{a^2+b^2+c^2}}\) từ BĐT cuối thuần nhất ta có thể chuẩn hóa \(a^2+b^2+c^2=3\)

Nghĩa là ta cần c/m \(Σ\dfrac{a}{3-a^2}\ge\dfrac{3}{2}\LeftrightarrowΣ\left(\dfrac{a}{3-a^2}-\dfrac{1}{2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-1\right)\left(a+3\right)}{3-a^2}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-1\right)\left(a+3\right)}{\left(3-a^2\right)}-\left(a^2-1\right)\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}\ge0\). Done !!

dinh huong
Xem chi tiết