Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Doan Dieu Huong
Xem chi tiết
Lãnh Hạ Thiên Băng
13 tháng 11 2016 lúc 7:40

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3

Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d

=> 2k+1 chia hết cho d; 2k+3 chia hết cho d

=> (2k+1 - 2k-3) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}

mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(2n+5;3n+7) là d

=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d

=> (6n+15-6n-14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

mà d lớn nhất => d = 1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Trần Gia Thanh
Xem chi tiết
Nguyễn Huy Tú
9 tháng 1 2021 lúc 20:04

Đặt \(6n+5;3n+2=d\left(d\in N\right)\)

\(6n+5⋮d\)

\(3n+2⋮d\Rightarrow6n+4⋮d\)

Suy ra : \(6n+5-6n-4⋮d\Leftrightarrow1⋮d\)

Vậy ta có đpcm 

Khách vãng lai đã xóa
Dương No Pro
9 tháng 1 2021 lúc 20:17

\(\text{Giải:}\)

\(\text{Gọi d là ƯCLN ( 6n + 5 ; 3n+ 2 )}\)

\(\Rightarrow\hept{\begin{cases}\text{6n + 5}\\\text{ 3n+ 2 }\end{cases}}⋮\text{d}\)\(\Rightarrow\hept{\begin{cases}\text{6n + 5 }\\\text{2(3n+ 2)}\end{cases}⋮\text{d}}\)\(\Rightarrow\hept{\begin{cases}\text{6n + 5 }\\\text{6n+ 6}\end{cases}⋮\text{d}}\)\(\Rightarrow\text{6n + 6 - 6n + 5 }⋮\text{d}\)

\(\Rightarrow1⋮\text{d}\)\(\Rightarrow\text{d}=1\)

\(\text{Vậy 6n + 5 và 3n + 2 là 2 số nguyên tố cùng nhau}\)

\(\text{Học tốt!!!}\)

Khách vãng lai đã xóa
Trần Gia Thanh
9 tháng 1 2021 lúc 20:53

cảm ơn nhé

Khách vãng lai đã xóa
Thân Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 23:11

a: Gọi d=ƯCLN(6n+5;2n+1)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\2n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+5⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow6n+5-6n-3⋮d\)

=>\(2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>2n+1 và 6n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(3n+2;5n+3)

=>\(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

=>\(15n+10-15n-9⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+2 và 5n+3 là hai số nguyên tố cùng nhau

Kim Seok Jin
Xem chi tiết
Vũ Thị Thanh
25 tháng 3 2021 lúc 19:48

đừng để anh nóng hơi mệt đấy

Khách vãng lai đã xóa
Võ Minh Vũ
Xem chi tiết
Nguyễn Minh Đăng
6 tháng 12 2020 lúc 9:24

Làm mẫu 2 phần nhé, 2 phần còn lại tương tự, ez lắm!

1) G/s \(\left(n+1;n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(n+1\right)⋮d\\\left(n+2\right)⋮d\end{cases}}\Rightarrow\left(n+2\right)-\left(n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> n+1 và n+2 NTCN

3) G/s: \(\left(2n+1;n+1\right)=d\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(n+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\2\left(n+1\right)⋮d\end{cases}}\)

\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

=> đpcm

Khách vãng lai đã xóa
❤Firei_Star❤
Xem chi tiết
Arima Kousei
18 tháng 7 2018 lúc 18:56

Gọi \(ƯCLN\left(6n+4;8n+5\right)\)là \(d\left(d>0\right)\)

Theo bài ra ta có : 

\(\hept{\begin{cases}6n+4⋮d\\8n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(6n+4\right)⋮d\\3\left(8n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+16⋮d\\24n+15⋮d\end{cases}}}\)

\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\) \(\left(6n+4;8n+5\right)\) là 1 : 

\(\Rightarrowđpcm\)

Pham Van Hung
18 tháng 7 2018 lúc 18:56

Hai số nguyên tố cùng nhau là 2 số chỉ có một ước chung là 1

Gọi d là ước chung của 6n+4 và 8n+5

Ta có: 6n+4 chia hết cho d và 8n+5 chia hết cho d.

Suy ra: 4(6n+4) -3(8n+5) chia hết cho d

24n+16 -24n-15 chia hết cho d

1 chia hết cho d

Do đó: d=1

Vậy 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau.

Mong bạn hiểu để lần sau làm được. Chúc bạn học tốt.

kudo shinichi
18 tháng 7 2018 lúc 19:02

Gọi \(\text{Ư}CLN\left(6n+4;8n+5\right)\)là d

\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\8n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}24n+16⋮d\\24n+15⋮d\end{cases}}}\)\(\Rightarrow24n+16-\left(24n+15\right)⋮d\)

\(\Rightarrow24n-24n+16-15⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\text{Ư}\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\)6n+4 và 8n+5 là 2 số nguyên tố cùng nhau

                                                   đpcm

Tham khảo nhé~

Hà Duy Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 20:01

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Lâm Khánh Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2021 lúc 21:40

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow a=1\)

Vậy: 2n+1 và 3n+1 là hai số nguyên tố cùng nhau

PhạmLê Hồng Ân
Xem chi tiết
Nguyễn Thị Thương Hoài
25 tháng 11 2023 lúc 21:04

Goị ước chung của 6n + 5 và 16n + 13 là d

Ta có: \(\left\{{}\begin{matrix}6n+5⋮d\\16n+13⋮d\end{matrix}\right.\)

        ⇒   \(\left\{{}\begin{matrix}8.\left(6n+5\right)⋮d\\\left(16n+13\right).3⋮d\end{matrix}\right.\)

           \(\left\{{}\begin{matrix}48n+40⋮d\\48n+39⋮d\end{matrix}\right.\)

             48n + 40 - (48n + 39n) ⋮ d

             48n + 40  - 48n - 39 ⋮ d

             (48n - 48n) + (40  - 39) ⋮ d

                                         1 ⋮ d

                                           d  =1

Ước chung lớn nhất của 6n + 5 và 16n + 13 là 1

Vậy 6n + 5 và 16n + 13 là hai số nguyện tố cùng nhau (đpcm)