đường tròn tâm O nội tiếp tam giác nhọn ABC . vẽ đường kính AD . H là trực tâm tam giác ABC . I là trung điểm của BC . chứng mih :
1. CH song song BD
2. IO =AH \(\dfrac{1}{2}\)
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), đường cao AD và trực tâm H. Gọi I là trung điểm của BC, AO cắt BC tại R. Qua R kẻ đường thẳng song song với IH cắt AH tại K. Gọi J là trung điểm của AH. Chứng minh rằng K là trực tâm của tam giác JBC
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC
Bài 1: Cho tam giác ABC cân tại A, nội tiếp đường tròn(O). Đường cao AH cắt đường tròn ở D.
a) Vì sao AD là đường kính của đường tròn(O)
b) Tính góc ∠ACD
c) Cho BC = 24cm; AC = 20cm. Tính đường cao AH và bán kính đường tròn(O)
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi M là trung điểm BC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M. Gọi I là trung điểm AC. CMR:
a) Chu vi tam giác IMC lớn hơn 2R
b) Chu vi tam giác ABC lớn hơn 4R
Bài 3: Cho tam giác ABC có D, E, F theo thứ tự là trung điểm BC, CA, AB. G, H, I theo thứ tự là chân đường cao từ đỉnh A, B, C. Trực tâm tam giác ABC là S. J, K, L theo thứ tự là trung điểm của SA, SB, SC. Chứng minh rằng: 9 điểm D, E, F, G, H, I, J, K, L cùng thuộc đường tròn. ( Gợi ý: đường tròn đường kính JD)
Bài 4: Cho tam giác ABC nội tiếp(O), H là trực tâm tam giác ABC. Gọi D, E, F thứ tự là trung điểm của BC, CA, AB. Đường tròn tâm D bán kính DH cắt BC tại A1, A2, đường tròn tâm E bán kính EH cắt CA tại B1, B2, đường tròn tâm F bán kính FH cắt AB tại C1, C2.
a) : Chứng minh 3 đường thẳng DD' , EE' , FF' đồng quy ( DD' song song với OA, EE' song songvới OB, FF' song song với OC ).
b) Chứng minh 6 điểm A1, A2, B1, B2, C1, C2 nằm trên một đường tròn.
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC
a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành
b, CNR H,G,O thẳng hàng
c, TÌm GTLN của AH+BC theo R
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
\(b,\) Kẻ \(OM\perp BC;ON\perp AC\)
\(\Rightarrow BM=MC;AN=NC\Rightarrow MN\) là đtb \(\Delta ABC\)
\(\Rightarrow MN\text{//}AB\Rightarrow\widehat{NMC}=\widehat{ABC};\widehat{MNC}=\widehat{ACB}\)
Mà \(\left\{{}\begin{matrix}\widehat{OMN}+\widehat{NMC}=90^0;\widehat{HAB}+\widehat{ABC}=90^0\\\widehat{ONM}+\widehat{MNC}=90^0;\widehat{ABH}+\widehat{ACB}=90^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMN}=\widehat{HAB}\\\widehat{ONM}=\widehat{ABH}\end{matrix}\right.\)
\(\Rightarrow\Delta OMN\sim\Delta HAB\left(g.g\right)\\ \Rightarrow\dfrac{OM}{AH}=\dfrac{MN}{AB}=\dfrac{1}{2}\)
Gọi \(AM\cap OH=\left\{G'\right\}\)
\(OM\text{//}AH\Rightarrow\dfrac{G'M}{G'A}=\dfrac{OM}{AH}=\dfrac{1}{2}\Rightarrow G'\) là trọng tâm \(\Delta ABC\)
Do đó \(G'\equiv G\) hay \(H,G,O\) thẳng hàng
cho tam giác abc nội tiếp đường tròn tâm O. BE,CF là 2 đường cao H là trực tâm AD là đường kính H cắt đường tròn tâm O tại P. Chứng minh PD song song BC, BAP=CAD
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC, I là trung điểm của BC và AD là đường kính, CH cắt AD tại E
a) Chứng minh AB.AE = AH.AC
b) AI cắt OH ở G. chứng minh G là trọng tâm tam giác ABC.
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và trực tâm H. Kẻ đường kính AD.
a/ Chứng minh tứ giác BHCD là hình bình hành
B/ Gọi I lầ trung điểm BC. Chứng minh: AH = 2OI
C/ Chứng minh: O,B là trọng tâm G của tam giác ABC là ba điểm thẳng hàng.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD vuông góc AB
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC vuông góc CD
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔHDA có
I,O lần lượt là trung điểm của DH,DA
=>IO là đường trung bình
=>IO//AH và IO=AH/2
=>AH=2IO
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Vẽ đường kính AK. gọi H là trực tâm , I là tâm đường tròn ngoại tiếp tam giác .
chứng minh rằng BHCK là hình bình hành
gọi m là trung điểm : chứng minh M H K thẳng hàng và AH= 2.OM
cho BAC = 60 độ, chứng minh rằng IO = IH
Cho tam giác ABC các góc đều nhọn và nội tiếp đường tròn tâm O. H là trực tâm của tam giác ABC.Vẽ đường thẳng AH cắt (O)tại H',cắt BC tại M.E,Flan lượt là trung điểm các cạnh CHva CH'.C/M EF song song và có độ dài bằng HM