Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xích U Lan
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 22:50

Lời giải:

a)

Khi $m=1$ thì HPT trở thành:\(\left\{\begin{matrix} x-y=2\\ x+y=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x=2+1\\ 2y=1-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{3}{2}\\ y=\frac{-1}{2}\end{matrix}\right.\)

b) 

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-y=2\\ x=1-my\end{matrix}\right.\Rightarrow m(1-my)-y=2\)

\(\Leftrightarrow y(m^2+1)=m-2\Rightarrow y=\frac{m-2}{m^2+1}\)

\(x=1-my=1-\frac{m^2-2m}{m^2+1}=\frac{1+2m}{m^2+1}\)

Để $x+y=-1$

$\Leftrightarrow \frac{m-2}{m^2+1}+\frac{1+2m}{m^2+1}=-1$

$\Leftrightarrow \frac{3m-1}{m^2+1}=-1$

$\Rightarrow 3m-1=-m^2-1$

$\Leftrightarrow m^2+3m=0\Rightarrow m=0$ hoặc $m=-3$

 

 

Đỗ Thanh Tùng
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
23 tháng 1 2021 lúc 20:09

a) Thay \(m=1\) vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

  Vậy ...

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)

Ta có: \(x^2+y^2=5\) 

\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

  Vậy ...

c) Hệ phương trình luôn có nghiệm duy nhất

Ta có: \(x-3y>0\)

\(\Rightarrow m-3\left(-m-1\right)>0\)

\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)

  Vậy ...

Nhan Ngo
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 20:05

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)

Đỗ Thanh Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 3 2021 lúc 20:27

a) Thay m=1 vào hệ pt, ta được:

\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)

Linh Bùi
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
1 tháng 3 2021 lúc 11:48

a)

Khi m = 1, ta có:

{ x+2y=1+3   

  2x-3y=1

=> { x+2y=4

        2x-3y=1

=> { 2x+4y=8

        2x-3y=1

=> { x+2y=4

        2x-3y-2x-4y=1-8

=> { x=4-2y

       -7y = -7

=> { x = 2

        y = 1

Vậy khi m = 1 thì hệ phương trình có cặp nghệm

(x; y) = (2;1)

Khang Diệp Lục
1 tháng 3 2021 lúc 15:11

a) Thay m=1 vào HPT ta có: 

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+4y=8\\7y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y)= (2;1)

Khang Diệp Lục
1 tháng 3 2021 lúc 15:31

undefined

Linh Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2021 lúc 13:05

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=8\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7y=7\\x+2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=4-2y=4-2=2\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(2;1)

b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2\left(m+3-2y\right)-3y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\2m+6-4y-3y-m=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y+m+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\-7y=-m-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2y\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+3-2\cdot\dfrac{m+6}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+3-\dfrac{2m+12}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7m+21-2m-12}{7}=\dfrac{5m+9}{7}\\y=\dfrac{m+6}{7}\end{matrix}\right.\)

Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3 thì \(\dfrac{5m+9}{7}+\dfrac{m+6}{7}=3\)

\(\Leftrightarrow6m+15=21\)

\(\Leftrightarrow6m=6\)

hay m=1

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+y=3

Nguyễn Thanh Hằng
1 tháng 3 2021 lúc 13:05

a/ Thay  \(m=1\) vào hpt ta có :

\(\left\{{}\begin{matrix}x+2y=4\\2x-3y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy...

b/ Ta có :

\(\left\{{}\begin{matrix}x+2y=m+3\\2x-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{2\left(m+3\right)}{2y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\\dfrac{m+3}{y}-3y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2y}\\m-3y^2+3=my\end{matrix}\right.\)

 

 

Huong Ly Nguyen
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
22 tháng 11 2021 lúc 20:27

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

Khách vãng lai đã xóa
huệ huệ
Xem chi tiết
Nguyễn Minh Ánh
Xem chi tiết