cho x,y là 2 số dương và x^2010+y^2010=x^2011+y^2011=x^2012+y^2012n tính giá trị A = x^2020+y^2020
cho x,y là 2 số dương và x2010+y2010=x2011+y2011=x2012+y2012 tính giá trị A = x2020+y2020
+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)
\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)
\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)
\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)
+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)
=> x + y = xy + 1
=> x + y - xy - 1 = 0
=> ( y - 1 ) - x( y - 1 ) = 0
=> ( 1 - x ) ( y - 1 ) = 0
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)
\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)
\(\Rightarrow y^{2010}\left(1-y\right)=0\)
\(\Rightarrow y=1\left(doy>0\right)\)
+ Tương tự nếu y = 1 ta cùng tìm được x = 1
Do đó : A = 2
Lời giải khác:
Ta có:
\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)
\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)
\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)
Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)
\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)
Lấy (2)-(1) ta có:
\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)
\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)
Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)
Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)
Mà $x,y$ đều dương nên $x=y=1$
Khi đó ta dễ tính ra $A=2$
cho x,y là 2 số dương và x2010+y2010=x2011+y2011=x2012+y2012 .Tính giá trị của biểu thức S=x2020+y2020
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow\left(x^{2012}+x^{2010}-2x^{2011}\right)+\left(y^{2012}+y^{2010}-2y^{2011}\right)=9\)\(\rightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
Do x;y dương => x=y=1
Tìm `x` và `y` sao cho biểu thức `A` có giá trị nhỏ nhất :
`A=|x-2010|+(y+2011)^2020+2011`
ta thấy: \(\left|x-2010\right|\ge0\); \(\left(y+2011\right)^{2020}\ge0\)
\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)
dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)
vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)
Cho các số dương x, y thỏa mãn
x^2010+y^2010 = x^2011+y^2011 = x^2012+y^2011.
Tính x^2016+y^2016
tìm giá trị nhỏ nhất của A= / x- 2010/ + ( y+ 2011)^2010 +2011 và giá trị của x, y tương ứng
2, tính : A = 2^12*3^5 - 4^6 * 9^2 / (2^2 * 3)^6 + 8^4 *3^5 - 5^10 *7^3 - 25^5 *49^2/ (125*7)^3 + 5^9 */14^3
3, Cho hàm số y = f(x) = ax^2 + bx +c
Cho biết f(0)= 2010; f(1)=2012 ; f(-1)= 2012. Tính f(-2)
x^2010+y^2010=x^2011+x^2011=x^2012+y^2012. tính x^2016+y^2016
cho 3 số x,y,z thỏa mãn \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)
tính giá trị của biểu thức\(A=x^{2010}-2011\cdot y^{2011}-z^{2012}\)
cho x, y thuộc N thoã mãn \(\frac{2010}{2011}< \frac{x}{y}< \frac{2011}{2012}\)
Tính giá trị nhỏ nhất của x+y
Tìm giá trị nhỏ nhất
P = 2018/x^2+2x+2017
Q = a^2018+2017/a^2018+2015
A = (x-3y)^2020+(y-2018)^2018
B = (x+y-5)^8+(x-2y)^4+2016
C = \x-2017\+\x-2018\
D = \x-2010\+\x-2011\+\x+2012\