CMR:(n+6)x(n+7)chia hết cho2
CMR: a ) (5n+7)(4n+6)chia hết cho 2
b) (8n+1)(6n+5) không chia hết cho2
c) n(n+1)(2n+1)chia hết cho 6
Cho n€ N cmr
n. (n+1) ( n+2 ) (n+3) ( n+4) chia hết cho2, chia hết cho 3, chia hết cho 5
n(n+1)(n+2)(n+3)(n+4) là 5 số tự nhiên liên tiếp
=> Có một số chia hết cho 1; một số chia hết cho 2; một số chia hết cho 3 và một số chia hết cho 5
=> đpcm
Chứng tỏ rằng (n+3)chia hết. cho(n+6)chia hết cho2(với n thuộc tập hợp N)
2n+6 chia hết cho2+n
Cái này chắc là tìm n bạn nhỉ
2n + 6 ⋮ 2 + n
⇒\(\left[{}\begin{matrix}2n+6⋮2+n\\2+n⋮2+n\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2n+6⋮2+n\\2\left(2+n\right)⋮2+n\end{matrix}\right.\)
➤ 2n + 6 ⋮ 2(2 + n)
Ta có 2n + 6 = 2(2 + n) + 2
Mà 2n + 6 ⋮ 2(2 + n)
Nên 2 ⋮ 2 + n
Vậy 2 + n ∈ Ư (2) = {-1;1;-2;2)
Ta có bảng sau :
2 + n | -1 | 1 | -2 | 2 |
n | -3 | -1 | -4 | 0 |
Vậy n ∈ {-3;-1;-4;0}
Câu hỏi đâu bn?!?!?!?
tìm n thuộc N,chứng minh rằng:
a) (n+10) (n+15) chia hết cho2
b) n(n+1) (2n+1) chia hết cho 6
c) n(n+1) (n+2) chia hết cho 6
Chứng minh rằng với mọi số nguyên n,ta luôn có:
n.(n+1)chia hết cho 2
n.(n+1).(n+2)chia hết cho 6
n.(n+1).(2n+1) chia hết cho2
n.(2n+1).(7n+1)chia hết cho 6
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Với n là số nguyên
+ Ta thấy: \(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(n.\left(n+1\right)⋮2\)
+ Ta thấy: \(n,n+1\) và \(n+2\) là 3 số nguyên liên tiếp
\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3
Mà \(\left(2;3\right)=1\)
\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)
hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)
+ Ta thấy:\(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)
CMR n x (2n + 7) x (7n + 7) chia hết cho 6
Đặt A= n x (2n + 7) x (7n + 7)
Ta có: A= (2n2+7n) x (7n+7)
=> A=14n3+49n2+14n2+49n
=> A=49n(n+1)+14n2(n+1)
=> A= (n+1).63n2
Ủa nên xem lại đề bạn ạ!
x chia hết cho2, x chia hết cho 3, x chia hết cho 5, x chia hết cho 7 . tĩm nhỏ nhất khác 0
Giải
Ta có: x 2,3,5,7 và x bé nhất
=>x∈BCNN(2,3,5,7)
2,3,5 và 7 là số ng/tố
=>BCNN(2,3,5,7)=2.3.5.7=210
=>x=210
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$