Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Việt Hoàng
Xem chi tiết
super xity
Xem chi tiết
Phước Nguyễn
16 tháng 11 2015 lúc 20:43

a. Ta có:

\(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8n+8=8\left(n+1\right)\)chia hết cho \(8\)

b. Đặt \(M=n^3+3n^2-3-n\), ta có:

\(M=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì  \(n\) là một số lẻ nên 

 \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(8\) (vì là tích của hai số chẵn liên tiếp)

và  \(n+3\) là số chẵn nên chia hết cho \(2\) 

Do đó: \(M\)chia hết cho  \(8.2=16\)  \(\left(\text{*}\right)\)

Mặt khác: \(M=n^3+3n^2-3-n=n\left(n^2-1\right)+3\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)+3\left(n^2-1\right)\)

Xét trường hợp:

+)  \(n=3k\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+1\Rightarrow\left(n-1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+2\Rightarrow\left(n+1\right)\) chia hết cho \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

nên  \(M\) chia hết cho  \(3\) \(\left(\text{**}\right)\)

Lại có: \(\left(16;3\right)=1\) \(\left(\text{***}\right)\)

Từ \(\left(\text{*}\right)\) , \(\left(\text{**}\right)\) ,  \(\left(\text{***}\right)\) suy ra  \(M\) chia hết  \(48\) với \(n\) lẻ

123456
16 tháng 11 2015 lúc 20:13

tick cho mình rồi mình làm cho

Nguyễn Thu Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2022 lúc 23:07

a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)

\(=18n⋮2\)

KK họ Phạm
Xem chi tiết
Nguyễn Nam
29 tháng 11 2017 lúc 22:34

Đề bài là tìm n chứ:

a) Ta có:

\(n+5⋮n+2\)

\(\Rightarrow\left(n+2\right)+3⋮n+2\)

\(\Rightarrow3⋮n+2\)

\(\Rightarrow n+2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+2=-1\Rightarrow n=-3\\n+2=1\Rightarrow n=-1\\n+2=-3\Rightarrow n=-5\\n+2=3\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{-3;-1;-5;1\right\}\)

b) Ta có:

\(2n+1⋮n-5\)

\(\Rightarrow\left(2n-10\right)+11⋮n-5\)

\(\Rightarrow2\left(n-5\right)+11⋮n-5\)

\(\Rightarrow11⋮n-5\)

\(\Rightarrow n-5\in U\left(11\right)=\left\{-1;1;-11;11\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n-5=-1\Rightarrow n=4\\n-5=1\Rightarrow n=6\\n-5=-11\Rightarrow n=-6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)

Vậy \(n\in\left\{4;6;-6;16\right\}\)

c) Ta có:

\(n^2+3n-13⋮n+3\)

\(\Rightarrow n\left(n+3\right)-13⋮n+3\)

\(\Rightarrow-13⋮n+3\)

\(\Rightarrow n+3\in U\left(13\right)=\left\{-1;1;-13;13\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}n+3=-1\Rightarrow n=-4\\n+3=1\Rightarrow n=-2\\n+3=-13\Rightarrow n=-16\\n+3=13\Rightarrow n=10\end{matrix}\right.\)

Vậy \(n\in\left\{-4;-2;-16;10\right\}\)

Cô nàng giấu tên
Xem chi tiết
Hoàng Thị Diệu Anh
Xem chi tiết
Hoàng Thị Quỳnh Anh
Xem chi tiết
Aikawa Maiya
13 tháng 7 2018 lúc 22:03

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2-5n\)

\(=5\left(n^2-n\right)⋮5\)

Vậy biểu thức trên \(⋮5\)

Tớ Đông Đặc ATSM
13 tháng 7 2018 lúc 22:07

<=> n3+2n2+3n2+6n-n-2-n3+2

<=> 5n2+5n <=> 5(n2+n) => chia hếtt cho 5

Hoàng Thị Quỳnh Anh
13 tháng 7 2018 lúc 22:18

Thanks 2 bn nhìu!!!

Nguyễn Huyền Trang
Xem chi tiết
Thần Rồng
Xem chi tiết