tìm nghiệm nguyên dương của phương trình x^2-y^2=2011
tìm nghiệm nguyên dương của phương trình x^3 - y^ = 95(x^2 + y^2)
tìm nghiệm nguyên dương của phương trình x^2-y^2=105
\(x^2-y^2=\left(x-y\right)\left(x+y\right)=105=3.35=5.21=7.15\)
+ Với \(\left(x-y\right)\left(x+y\right)=3.35\Rightarrow x-y=3;x+y=35\Rightarrow x=19;y=16\)
+ Với \(\left(x-y\right)\left(x+y\right)=5.21\Rightarrow x-y=5;x+y=21\Rightarrow x=13;y=8\)
+ Với \(\left(x-y\right)\left(x+y\right)=7.15\Rightarrow x-y=7;x+y=15\Rightarrow x=11;y=4\)
tìm nghiệm nguyên dương của phương trình x^2+y^2=3z^2
tìm nghiệm nguyên dương của phương trình x^2+y^2+z^2=2xyz
\(x^2+y^2+z^2=2xyz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)
\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)
Tìm nghiệm nguyên dương của phương trình xy-x-y=2
Tìm nghiệm nguyên dương của phương trình sau: \(3^x-2^y=1\)
- Với \(x=1\Rightarrow y=1\)
- Với \(x>1\Rightarrow y>1\)
\(\Rightarrow3^x=2^y+1\)
Do \(y>1\Rightarrow2^y⋮4\Rightarrow2^y+1\equiv1\left(mod4\right)\) \(\Rightarrow3^x\equiv1\left(mod4\right)\)
Nếu \(x=2k+1\Rightarrow3^x=3^{2k+1}=3.9^k\equiv3\left(mod4\right)\) (ktm)
\(\Rightarrow x=2k\Rightarrow3^{2k}-1=2^y\)
\(\Rightarrow\left(3^k-1\right)\left(3^k+1\right)=2^y\)
\(\Rightarrow\left\{{}\begin{matrix}3^k-1=2^a\\3^k+1=2^b\end{matrix}\right.\) với \(b>a\Rightarrow2^b-2^a=2\)
\(\Rightarrow2^a\cdot\left(2^{b-a}-1\right)=2\Rightarrow2^a=2\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
\(\Rightarrow3^k-1=2\Rightarrow k=1\Rightarrow x=2\Rightarrow y=3\)
Vậy \(\left(x;y\right)=\left(1;1\right);\left(2;3\right)\)
1. Tìm các nghiệm nguyên dương của phương trình: 3(xy+yz+zx) = 4xyz
2. Xác định tất cả các cặp (x;y) nguyên dương thỏa mãn phương trình: (x+1)^4 - (x-1)^4 = y^3
3. Tìm nghiệm nguyên dương của phương trình: x^2y + y^2z + z^2x = 3xyz
P/s: Tôi có bài giải rồi, ai có ý kiến khác tôi thì ý kiến nhé
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
MK cop nhưng ủng hộ mk nha , mk có lòng trả lời
tìm nghiệm nguyên dương của phương trình x^2+ y^2+ z^2+ xyz=13
Không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\).
Khi đó ta có: \(13=xyz+x^2+y^2+z^2\ge z^3+3z^2\)
suy ra \(z=1\).
\(12=xy+x^2+y^2\ge y^2+y^2+y^2=3y^2\)
\(\Rightarrow y=1\)hoặc \(y=2\).
Với \(y=1\): \(x^2+1+1+x=13\Leftrightarrow x^2+x-11=0\)không có nghiệm nguyên dương.
Với \(y=2\): \(x^2+2^2+1^2+1.2.x=13\Leftrightarrow x^2+2x-8=0\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow x=2\)thỏa mãn.
Vậy phương trình có nghiệm là \(\left(1,2,2\right)\)và các hoán vị.
1. Tìm nghiệm nguyên của phương trình:
\(xy+3x+2y=6\)
2.Tìm nghiệm nguyên dương:
\(x^2-y^2=2011\)
3.Tìm nghiệm nguyên:
\(4x+5y=2012\)
\(a,\)\(xy+3x+2y=6\)
\(\Rightarrow xy+3x+2y+6=6+6\)
\(\Rightarrow x\left(y+3\right)+2\left(y+3\right)=12\)
\(\Rightarrow\left(y+3\right)\left(y+2\right)=12\)
\(TH1\):\(\orbr{\begin{cases}y+3=1\\x+2=12\end{cases}\Rightarrow\orbr{\begin{cases}y=-2\\x=10\end{cases}}}\)
\(TH2\): \(\orbr{\begin{cases}y+3=-1\\x+2=-12\end{cases}\Rightarrow\orbr{\begin{cases}y=-4\\x=-14\end{cases}}}\)
\(TH3\): \(\orbr{\begin{cases}y+3=12\\x+2=1\end{cases}\Rightarrow\orbr{\begin{cases}y=9\\x=-1\end{cases}}}\)
\(TH4\): \(\orbr{\begin{cases}y+3=-12\\x+2=-1\end{cases}\Rightarrow\orbr{\begin{cases}y=-15\\x=-3\end{cases}}}\)
\(TH5\): \(\orbr{\begin{cases}y+3=2\\x+2=6\end{cases}\Rightarrow\orbr{\begin{cases}y=-1\\x=4\end{cases}}}\)
\(TH6\): \(\orbr{\begin{cases}y+3=6\\x+2=2\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)
\(TH7\): \(\orbr{\begin{cases}y+3=-2\\x+2=-6\end{cases}\Rightarrow\orbr{\begin{cases}y=-5\\x=-8\end{cases}}}\)
\(TH8\)\(:\)\(\orbr{\begin{cases}y+3=-6\\x+2=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=-9\\x=-4\end{cases}}}\)
\(TH9\): \(\orbr{\begin{cases}y+3=3\\x+2=4\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\x=2\end{cases}}}\)
\(TH10\): \(\orbr{\begin{cases}y+3=4\\x+2=3\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x=1\end{cases}}}\)
\(TH11\): \(\orbr{\begin{cases}y+3=-3\\x+2=-4\end{cases}\Rightarrow\orbr{\begin{cases}y=-6\\x=-6\end{cases}}}\)
\(TH12\): \(\orbr{\begin{cases}y+3=-4\\x+2=-3\end{cases}\Rightarrow\orbr{\begin{cases}y=-7\\x=-5\end{cases}}}\)
KL...
chưa thấy bạn nào làm bài 3 , thì em làm ạ :))
Giả sử x, y là các số nguyên thoă mãn phương trình đã cho .
\(4x+5y=2012\Leftrightarrow5y=2012-4y\Leftrightarrow5y=4\left(503-y\right).\)(1)
Dễ thấy vế phải của (1) chia hết cho 4 \(\Rightarrow5y⋮4\)mà (5;4)=1 nên y chia hết cho 4.
Đặt \(y=4t\left(t\in Z\right)\)thế vào phương trình đầu ta được : \(4x+20t=2012\Leftrightarrow\hept{\begin{cases}x=503-5t\\y=4t\end{cases}.}\)(*)
Thử thay vào các biểu thức của x, y ở (*) ta thấy thỏa mãn
Vậy phương trình có vô số nghiệm \(\left(x;y\right)=\left(503-5t;4t\right)\forall t\in Z.\)
\(b,\)\(x^2-y^2=2011\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)=2011\)
\(TH1\)\(\hept{\begin{cases}x-y=1\\x+y=2011\end{cases}\Rightarrow\hept{\begin{cases}x=1+y\\x+y=2011\end{cases}}}\)
\(\Rightarrow1+y+y=2011\)
\(\Rightarrow2y=2010\)\(\Rightarrow y=1005\)
\(\Rightarrow x=1005+1=2006\)
\(TH2\)\(\hept{\begin{cases}x-y=2011\\x+y=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-y=2011\\x=1-y\end{cases}}\)
\(\Rightarrow1-y-y=2011\)
\(\Rightarrow-2y=2010\)
\(\Rightarrow y=-1005\)
\(\Rightarrow x=1-\left(-1005\right)=1+1005=1006\)
\(TH3\)\(\hept{\begin{cases}x-y=-1\\x+y=2011\end{cases}\Rightarrow\hept{\begin{cases}x=-1+y\\x+y=2011\end{cases}}}\)
\(\Rightarrow-1+y+y=2011\)
\(\Rightarrow2y=2012\)
\(\Rightarrow y=1006\)
\(\Rightarrow x=-1+1006=1005\)
\(TH4\)\(\hept{\begin{cases}x-y=-2011\\x+y=-1\end{cases}\Rightarrow\hept{\begin{cases}x-y=-2011\\x=-1-y\end{cases}}}\)
\(\Rightarrow-1-y-y=-2011\)
\(\Rightarrow-2y=2010\)
\(\Rightarrow y=1005\)
\(\Rightarrow x=-1-1005=-1006\)
KL....
Câu a , cô sửa cho em ngoặc vuông thành ngoặc móc nha