Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Bùi Nhật Linh
Xem chi tiết
Lê Văn Hoàng
Xem chi tiết
GG boylee
Xem chi tiết
Nhok_baobinh
Xem chi tiết
Lê Thế Minh
10 tháng 12 2017 lúc 11:26

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

Nguyễn Thiều Công Thành
Xem chi tiết
Thắng Nguyễn
10 tháng 9 2017 lúc 0:47

Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập  springtime ấy

Hoàng Ninh
10 tháng 9 2017 lúc 6:14

Chào bác Thắng

Không Bít
Xem chi tiết
Kudo Shinichi
30 tháng 9 2019 lúc 17:09

\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Ta cần chứng minh :

\(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) luôn đúng 

Chúc bạn học tốt !!!

tth_new
30 tháng 9 2019 lúc 19:55

hoang viet nhat copy nhớ ghi nguồn nha bạn:))Link 

Mà quan trọng là copy mà bạn có hiểu không là chuyện khác:) Bạn hãy giải thích tại sao:

\(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+^2+c^2}\)

Linh_Chi_chimte
Xem chi tiết

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

tth_new
Xem chi tiết
Nguyễn Hoàng
1 tháng 2 2019 lúc 20:22

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

tth_new
1 tháng 2 2019 lúc 20:41

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

Kiệt Nguyễn
4 tháng 6 2020 lúc 15:45

Vì abc = 1 nên ta viết bất đẳng đẳng lại thành:\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{3}{abc}\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(a;b;c\right)\). Khi đó ta cần chứng minh \(a^2+b^2+c^2+3abc\ge2\left(ab+bc+ca\right)\)với abc = 1

Theo nguyên lí Dirichlet thì trong ba số a - 1; b - 1; c - 1 tồn tại ít nhất hai số cùng dấu. Giả sử hai số đó là a - 1 và b - 1 thì \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab\ge a+b-1\Leftrightarrow abc\ge ac+bc-c\)

Khi đó \(a^2+b^2+c^2+3abc\ge a^2+b^2+c^2+3\left(ac+bc-c\right)\)nên phép chứng minh sẽ hoàn tất nếu ta chỉ ra được rằng \(a^2+b^2+c^2+3\left(ac+bc-c\right)\ge2\left(ab+bc+ca\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-b\right)^2+c\left(a+b+c-3\right)\ge0\)(Luôn đúng vì theo AM - GM cho 3 số dương thì \(a+b+c\ge3\sqrt[3]{abc}=3\))

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thiều Công Thành
23 tháng 8 2017 lúc 15:00

bđt phụ sai mà cũng ko đc chuẩn hóa

Witch Rose
23 tháng 8 2017 lúc 18:38

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

Thắng Nguyễn
23 tháng 8 2017 lúc 19:40

SOS cho khỏe :v 

WLOG \(a\ge b\ge c\)

Áp dụng BĐT AM-GM ta có:

\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)

\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)

\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)

\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)

\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)

\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)