a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR
\(\frac{1}{2a^2+3}+\frac{1}{2b^2+3}+\frac{1}{2c^2+3}\ge\frac{3}{5}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Cho a,b, c là các số thực dương thỏa mãn a+b+c=3. CMR :
\(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
bài1: Cho a,b,c là các số dương thỏa mãn a+b+c=1
CMR:\(b+c\ge16abc\)
Bài 2: Cho a,b,c là các số dương thỏa mãn a+b+c=1
CMr \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:
\(a^3+b^3+c^3+4\left(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}\right)\ge9\)
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:\(\frac{1}{2a^3+3a+2}+\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\ge\frac{3}{7}\)
cho a , b , c là các số thực dương thỏa mãn điều kiện abc = 1 . CMR : \(\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le1\)