Giải phương trình:\(\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}\)
Giải phương trình:
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\frac{x+1}{94}+1+\frac{x+2}{93}+1+\frac{x+3}{92}+1=\frac{x+4}{91}+1+\frac{x+5}{90}+1+\frac{x+6}{89}+1\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
\(\Leftrightarrow x+95=0\).Do \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Leftrightarrow x=-95\)
(x+1)/94 + ( x+2)/93 + ( x+3)/92.......
= ................ + ( x+6)/89
<=> (x+1)/94 + 1 + ( x+2)/93 +1 .........
=.............. cộng 1 nhá
<=> (x+95)/94 + ( x+96) / 93 + ( x+95)/92
= ( x+95)/91 + ( x+95)/90 + ( x+95)/89
<=> ( x+95) ( 1/94 +1/93 +1/92 )
= ( x+95) ( 1/91 +1/90 +1/89)
<=> ( x+95) ( 1/94 +1/93 +1/92 - 1/91 - 1/90 - 1/89 )
<=> x+95 =0
<=>x = -95
Vậy :x = -95
Giải phương trình
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Leftrightarrow\) \(\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Vì \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Leftrightarrow x=-95\)
Vậy phương trình có một nghiệm x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Leftrightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Leftrightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-60}{55}-\frac{x-60}{54}=0\)
\(\Leftrightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Vì \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Leftrightarrow x=60\)
Vậy phương trình có một nghiệm x = 60
a) \(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Rightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Rightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}-\frac{x+95}{91}-\frac{x+95}{90}-\frac{x+95}{89}=0\)
\(\Rightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Mà \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\ne0\)
\(\Rightarrow x+95=0\)
\(\Rightarrow x=-95\)
Vậy x = -95
b) \(\frac{x-1}{59}+\frac{x-2}{58}+\frac{x-3}{57}=\frac{x-4}{56}+\frac{x-5}{55}+\frac{x-6}{54}\)
\(\Rightarrow\left(\frac{x-1}{59}-1\right)+\left(\frac{x-2}{58}-1\right)+\left(\frac{x-3}{57}-1\right)=\left(\frac{x-4}{56}-1\right)+\left(\frac{x-5}{55}-1\right)+\left(\frac{x-6}{54}-1\right)\)
\(\Rightarrow\frac{x-60}{59}+\frac{x-60}{58}+\frac{x-60}{57}-\frac{x-60}{56}-\frac{x-5}{55}-\frac{x-6}{54}=0\)
\(\Rightarrow\left(x-60\right)\left(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\right)=0\)
Mà \(\frac{1}{59}+\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}-\frac{1}{54}\ne0\)
\(\Rightarrow x-60=0\)
\(\Rightarrow x=60\)
Vậy x = 60
1. Gỉai các phương trình sau
\(a,\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(b,\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)
\(c,\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
HELP ME!
\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)
\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x^3-4x^2+4x-5x^2\)
\(\Leftrightarrow27x-2x-4x-27+2=0\)
\(\Leftrightarrow21x=25\)
\(\Leftrightarrow x=\frac{25}{21}\)
Hết ý tưởng,phá tung ra,sai chỗ nào tự sửa nhé !
\(\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)
\(\Leftrightarrow\frac{2\left(x+1\right)^2+3\left(x+2\right)\left(x-3\right)-\left(5x-1\right)\left(x-4\right)}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{2x^2+4x+2+3x^2-3x-18-5x^2-21x+4}{6}=\frac{28}{3}\)
\(\Leftrightarrow\frac{\left(4x-3x-21x\right)+\left(2-18+4\right)}{6}=\frac{56}{6}\)
\(\Leftrightarrow-20x-12=56\)
\(\Leftrightarrow-20x=68\)
\(\Leftrightarrow x=-\frac{17}{5}\)
Tự check lại nhá
\(\frac{x+1}{94}+\frac{x+2}{93}+\frac{x+3}{92}=\frac{x+4}{91}+\frac{x+5}{90}+\frac{x+6}{89}\)
\(\Leftrightarrow\left(\frac{x+1}{94}+1\right)+\left(\frac{x+2}{93}+1\right)+\left(\frac{x+3}{92}+1\right)=\left(\frac{x+4}{91}+1\right)+\left(\frac{x+5}{90}+1\right)+\left(\frac{x+6}{89}+1\right)\)
\(\Leftrightarrow\frac{x+95}{94}+\frac{x+95}{93}+\frac{x+95}{92}=\frac{x+95}{91}+\frac{x+95}{90}+\frac{x+95}{89}\)
\(\Leftrightarrow\left(x+95\right)\left(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}\right)=0\)
Ta dễ thấy \(\frac{1}{94}+\frac{1}{93}+\frac{1}{92}-\frac{1}{91}-\frac{1}{90}-\frac{1}{89}< 0\) nên
\(x+95=0\Leftrightarrow x=-95\)
16, giải phương trình.
1, \(\frac{x+5}{65}+\frac{x+10}{60}=\frac{x+15}{55}+\frac{x+20}{50}\)
2, \(\frac{x+91}{81}+\frac{x+92}{82}+\frac{x+93}{83}=3\)
3, \(\frac{59-x}{19}+\frac{58-x}{18}=\frac{57-x}{17}+\frac{56-x}{16}\)
4, \(\frac{x}{15}+\frac{x+1}{16}+\frac{x+2}{17}+\frac{x+3}{18}+\frac{x+4}{19}=5\)
Giải phương trình sau
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
Giải các phương trình sau
1) \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
2)\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
3)\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{91}+4=0\)
4)\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
Phương trình 4:
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Rightarrow\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}-15=0\)
\(\Rightarrow\left(\frac{x-90}{10}-1\right)+\left(\frac{x-76}{12}-2\right)+\left(\frac{x-58}{14}-3\right)+\left(\frac{x-36}{16}-4\right)+\left(\frac{x-15}{17}-5\right)=0\)
\(\Rightarrow\frac{x-90-10}{10}+\frac{x-76-24}{12}+\frac{x-58-42}{14}+\frac{x-36-64}{16}+\frac{x-15-85}{17}=0\)
\(\Rightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
Do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
giải các bất phương trình:
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4< =2x-1\)
Ta có :
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)< \left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+5}{61}-\frac{x+7}{59}< 0\)
\(\Leftrightarrow\)\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
Vì \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
\(\Rightarrow\)\(x+66>0\)
\(\Rightarrow\)\(x>-66\)
Vậy \(x>-66\)
Ta có :
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4\le0\)
\(\Leftrightarrow\)\(\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)+4\le0\)
\(\Leftrightarrow\)\(\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}+4\le0\)
\(\Leftrightarrow\)\(\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)+4\le0\)
Hết biết giải, mk mới lớp 7 :')
Giải phương trình sau
a,\(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
b,\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
c,\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
a, \(2\left(\frac{11x}{12}+\frac{1}{3}\right)=2-\frac{x}{6}\)
\(2\left(\frac{11x+4}{12}\right)-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-2+\frac{x}{6}=0\)
\(\frac{44x+8}{12}-\frac{24}{12}+\frac{2x}{12}=0\)
\(\frac{44x+8-24+2x}{12}=\frac{46x-16}{12}=0\)
\(\Leftrightarrow46x-16=0\)
\(\Leftrightarrow46x=16\Rightarrow x=\frac{8}{23}\)
Vậy nghiệm của pt là x=8/23
k mk
Giải bất phương trình sau:
\(\frac{x+8}{92}+\frac{x+7}{93}+\frac{x+6}{94}\ge\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Leftrightarrow\frac{x+8}{92}+1+\frac{x+7}{93}+1+\frac{x+6}{94}+1\ge\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Leftrightarrow\frac{x+100}{92}+\frac{x+100}{93}+\frac{x+100}{94}\ge\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{92}-\frac{1}{98}+\frac{1}{93}-\frac{1}{97}+\frac{1}{94}-\frac{1}{96}\right)\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{6}{92.98}+\frac{4}{93.97}+\frac{2}{94.96}\right)\ge0\)
\(\Leftrightarrow x+100\ge0\Rightarrow x\ge-100\)