Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
XiangLin Linh
Xem chi tiết
Minh Hiếu
25 tháng 2 2022 lúc 20:05

Ta có:

\(a^{2001}+b^{2001}=a^{2000}+b^{2000}\)

\(a^{2001}+b^{2001}-a^{2000}-b^{2000}=0\)

\(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)

Vì: \(\left\{{}\begin{matrix}a^{2000}\ge0\forall x\\b^{2000}\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow a=b=1\)

\(\Rightarrow a^{2014}+b^{2014}=1+1=2\)

Lê Nhật Mai
Xem chi tiết
nguyen van hai
18 tháng 2 2016 lúc 22:18

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

Ngô Quang Huy
Xem chi tiết
Lê Phúc Thuận
Xem chi tiết
Hiếu
15 tháng 2 2018 lúc 19:48

Từ đề ra : \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)

=> Chuyển vế và nhóm lại ta đc : \(a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\) (1)

Tương tự ta có : \(a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)

Trừ 2 cho 1 : \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\) ( bạn phân tích là đc như vậy )

Vì các số hạng trên đều \(\ge0\) 

Nên : biểu thức bằng = khi các số hạng = 0 

Bạn cho các  số hạng =0 rồi tính ra đc : 

\(\orbr{\begin{cases}a=0\\a=1\end{cases}}\) và \(\orbr{\begin{cases}b=0\\b=1\end{cases}}\)

Vì a,b dương nên \(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

=> \(a^{2011}+b^{2011}=1+1=2\)

Hoàng Phúc
Xem chi tiết
ngonhuminh
25 tháng 12 2016 lúc 16:57

\(a^{2000}+b^{2000}=a.a^{2000}+b.b^{2000}=a^2.a^{2000}+b^2.b^{2000}\)

a=b={0,1} là nghiệm 

xét a,b \(\ne\left\{0,1\right\}\)

\(\left(1-a\right).a^{2000}=\left(b-1\right).b^{2000}\Leftrightarrow\frac{1-a}{b-1}=\left(\frac{b}{a}\right)^{2000}\)(1)

\(\left(1-a^2\right).a^{2000}=\left(b^2-1\right).b^{2000}\Rightarrow\frac{1-a^2}{b^2-1}=\left(\frac{b}{a}\right)^{2000}\)(2)

(1)&(2)=>\(\frac{1-a}{b-1}=\frac{1-a^2}{b^2-1}\Rightarrow\left(1-a\right)\left(b+1\right)=\left(1-a\right)\left(1+a\right)\Rightarrow a=b\)

Thay vào phương trình đầu: => a=b={0,1) a, b dương => a=b=1

a^20011+b^20011=2

Cold Wind
25 tháng 12 2016 lúc 16:31

\(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Leftrightarrow a^{2000}+b^{2000}=a\cdot a^{2000}+b\cdot b^{2000}=a^2\cdot a^{2000}+b^2\cdot b^{2000}\)

Mà a,b >0 

\(\Rightarrow\hept{\begin{cases}a=a^2=1\\b=b^2=1\end{cases}\Rightarrow a=b=1}\)

Vậy \(a^{2011}+b^{2011}=1+1=2\)

True or False??!?

Hoàng Phúc
25 tháng 12 2016 lúc 16:34

chưa chặt chẽ

Phương Đăng
Xem chi tiết
Ngu Ngu Ngu
30 tháng 4 2017 lúc 21:55

Từ đề bài ta có:

\(\left(a^{2001}+b^{2001}\right)\left(a+b\right)-\left(a^{2000}+b^{2000}\right)ab=a^{2002}+b^{2002}\)

\(\Leftrightarrow\left(a+b\right)-ab=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Với \(a=1\Rightarrow b^{2000}=b^{2001}\Leftrightarrow\orbr{\begin{cases}b=1\\b=0\end{cases}}\) (loại)

Với \(b=1\Rightarrow a^{2000}=a^{2001}\Leftrightarrow\orbr{\begin{cases}a=1\\a=0\end{cases}}\) (loại)

Vậy \(a=b=1\Rightarrow a^{2011}+b^{2011}=1+1=2\)

Ha Hoang Vu Nhat
Xem chi tiết
Nữ Thần Mặt Trăng
26 tháng 2 2017 lúc 11:03

Áp dụng BĐT Cauchy-Schwartz:

\((a^{2000}+b^{2000})(a^{2002}+b^{2002})\ge(a^{2001}+b^{2001})^{2}\)

Đẳng thức xảy ra khi \(\dfrac{a^{2000}}{a^{2001}}=\dfrac{b^{2000}}{b^{2001}}\Leftrightarrow \dfrac{1}{a}=\dfrac{1}{b}\Leftrightarrow a=b\)\((a,b>0)\)

Từ giả thiết, suy ra đc a=b => \(a^{2000}=a^{2001}\Rightarrow a=b=1(a>0)\)

Từ đó suy ra \(a^{2017}+b^{2017}=2\)

Le vi dai
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 11:25

bạn ấn vào đúng 0 sẽ ra đáp án mình giải 

Không quan tâm
26 tháng 1 2016 lúc 11:28

a2001+b2001 =2

Nguyễn Thu Trang
26 tháng 1 2016 lúc 11:28

bạn Phạm Ngọc Thạch lúc nào cũng nói thế để lừa dối mọi người thế

Mắt Nâu Nhung
Xem chi tiết