Xác định điều kiện và giải phương trình sau:( Giúp mk với)
\(\dfrac{2}{x+\dfrac{1}{1+\dfrac{x+1}{x-2}}}=\dfrac{6}{3x-1}\)
Điều kiện xác định của phương trình \(\dfrac{2x+1}{x-1}+\dfrac{2-3x}{1+x}=\dfrac{1}{2}\)
tìm điều kiện xác định của các phương trình sau
\(a,3x^2-2x=0\) \(b,\dfrac{1}{x-1}=3\)
\(c,\dfrac{2}{x-1}=\dfrac{x}{2x-4}\) \(d,\dfrac{2x}{x^2-9}=\dfrac{1}{x+3}\)
\(e,2x=\dfrac{1}{x^2-2x+1}\) \(f,\dfrac{1}{x-2}=\dfrac{2x}{x^2-5x+6}\)
giúp mik với , mik cần gấp
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
a) x∈R
b) x≠1
c) x∉{1;2}
d) x∉{3;−3}
e) x≠1
f) x∉{2;3}
Tìm ĐIỀU KIỆN XÁC ĐỊNH của phương trình \(\dfrac{x}{2\left(x-3\right)}\)+\(\dfrac{x}{2\left(x+1\right)}\)=\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)và phương trình \(\dfrac{6}{x-2}\)=\(\dfrac{7}{-x-3}\)
+ Pt thứ nhất :
Ta có mẫu thức chung là : \(2\left(x-3\right)\left(x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x\ne2\\x-3\ne0\\x+1\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne3\\x\ne-1\end{matrix}\right.\)
Vậy \(ĐKXĐ\) là :\(x\ne2;3;-1\)
+ Pt thứ hai :
Ta có mẫu thức chung là : \(\left(x-2\right)\left(x+3\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2\ne0\\x+3\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-3\end{matrix}\right.\)
Vậy \(DKXD:\) \(\) \(x\ne2;-3\)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\)
GIẢI PHƯƠNG TRÌNH VÀ GHI RÕ ĐIỀU KIỆN CỦA CÁC CÂU.
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10
Câu 1 : Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn:
A. x2 - 2 = 0
B. \(\dfrac{1}{2}\)x - 3 = 0
C. \(\dfrac{1}{x}\) - 2x = 0
D. (22 - 4)x + 3 = 0 .
Câu 2 : Điều kiện xác định của phương trình \(\dfrac{x-2}{x+1}\) = \(\dfrac{2x+3}{x}\) là :
A. x ≠ 1
B. x ≠ -1
C. x ≠ 0, x ≠ 1
D. x ≠ 0, x ≠ -1
Câu 3 : Cặp phương trình nào tương đương là:
A. x + 4 = 0 và x = -4
B. (x – 5)(x + 5) = 0 và x2 = 5
C. x2 = 9 và x = 9
D. x2 + 3 = 0 và x = 3
Câu 4 : Cho ΔABC ∽ ΔDEF theo tỉ số đồng dạng là \(\dfrac{2}{3}\).
Khi đó ΔDEF ∽ ΔABC theo tỉ số đồng dạng là:
A.\(\dfrac{3}{2}\)
B.\(\dfrac{9}{4}\)
C.\(\dfrac{4}{9}\)
D.\(\dfrac{2}{3}\)
Câu 5 : Cho tam giác ABC có: DE / /BC, AD = 6cm, AB = 9cm, AC = 12cm. Độ dài AE = ?
A. AE = 6cm
B. AE = 8cm
C. AE = 10cm
D. AE = 12cm
Câu 6 (TL) : Cho biểu thức A = \(\dfrac{x+2}{3}\) và B = \(\dfrac{2x}{x-3}\) - \(\dfrac{2x^2+3x+9}{x^2-9}\) với x ≠ 3; x ≠ -3
a) Tính giá trị của A tại x = 14
b) Rút gọn biểu thức P = A.B
Câu 7 (TL) : Cho ΔABC vuông tại B (BA < BC), đường cao BH.
a) Chứng minh: ΔABC ∽ ΔBHC
b) Tia phân giác của góc BAC cắt BH tại D. Biết AH = 6cm, AB = 10cm. Tính BH, AD?
c) Tia phân giác của góc HBC cắt AC tại M. Chứng minh: \(\dfrac{HD}{DB}\)=\(\dfrac{HM}{MC}\)
Mọi người giúp em với ạ (làm đc câu nào thì làm ạ làm tự luận hình thì càng tốt ạ)
1B
2D
3A
4A
5B
6:
a: \(A=\dfrac{14+2}{3}=\dfrac{16}{3}\)
b: P=A*B
\(=\dfrac{x+2}{3}\cdot\dfrac{2x^2+6x-2x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+2}{3}\cdot\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{x+3}\)
Điều kiện xác định của phương trình\(\dfrac{x+2}{x-3}=\dfrac{3x-1}{x\left(x-3\right)}+1\)
A.\(x\ne0;x\ne3\)
B.\(x\ne0;x\ne-3\)
C.\(x\ne0\)
D.\(x\ne\pm3\)
Điều kiện xác định là `{(x-3 ne 0),(x(x-3) ne 0):}`
`<=>{(x ne 3),(x ne 0):}`
`=>bb A`
ĐCXĐ: \(\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
Tìm điều kiện của x để phân thức sau xác định:
1) \(\dfrac{5-x}{x^2-3x}\)
2) \(\dfrac{3x}{2x+3}\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
Rút gọn các phân thức sau:
a) \(\dfrac{5x}{10}\)
b)\(\dfrac{4xy}{2y}\) (y≠0)
c)\(\dfrac{5x-5y}{3x-3y}\) (x≠y)
d) \(\dfrac{x^2-y^2}{x+y}\)(chưa có điều kiện xác định)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}\)(chưa có điều kiện xác định)
f) \(\dfrac{x^2+4x+4}{2x+4}\)(chưa có điều kiện xác định)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)
d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)
e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)
f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)