cho tam giác ABC lấy điểm D bất kì trên BC, nối AD, lấy điểm B đối xứng với E qua AD, C đối xứng với F qua AD.Xác địng điểm D để BE+CF đạt giá trị lớn nhất
Giúp mình bài này với
Cho tam giác ABC
a) Gọi M là trung điểm của AC. Biết BM = AC. Gọi D là điểm đối xứng của B qua A, gọi E là điểm đối xứng của M qua C. CMR: DM vuông góc với BE
b) Lấy điểm O bất kì trong tam giác. Các tia AO; BO; C cắt các cạnh BC; CA; AB thứ tự tại D; E; F. CMR:
b1) OD/AD + OE/BE + OF/CF = 1
b2) (1 + AD/OD)(1 + BE/OE)(1 + CF/OF) >= 64
1.cho tam giác abc các đường phân giác AD,BE,CF gọi I và K là các điểm đối xứng với A qua BE,CF. Gọi G và H thứ tự thứ tự là các điểm đối xứng với B và C qua AD. CMR:GI//HK
2.Cho tam giác ABC, D thuộc BC. Lấy M thuộc AD, lấy I và K thuộc MB và Mc sao cho IB/IM=KC/KM
E là giao điểm của ID với AB. F là giao điểm của KD với AC. CMR EF//BC
Bài 1.Cho tam giác ABC vuông ở A , lấy D là điểm bất kì thuộc cạnh BC . Gọi E là điểm đối xứng với D qua AB , F là điểm đối xứng với D qua AC .Điểm D ở vị trí nào trên cạnh BC thì EF có độ dài ngắn nhất?
Cho tam giác ABC, các đường trung tuyến AD, BE, CF cắt nhau ở G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G ?
Ta có GH = GA (cùng bằng 2GD) nên điểm đối xứng với A qua G là H. Tương tự, ta có điểm đối xứng với B qua G là I và điểm đối xứng với C qua G là K
Cho tam giác ABC, các đường trung tuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.
*) Tam giác ABC có ba đường trung tuyến AD, BE, CF cắt nhau tại G nên G là trọng tâm tam giác ABC.
* Ta có: GD = DH (tính chất đối xứng tâm)
⇒ GH = 2GD (l)
GA = 2GD (tính chất đường trung tuyến của tam giác) (2)
Từ (1) và (2) suy ra: GA = GH
Suy ra điểm đối xứng với điểm A qua G là H.
* Ta có: GE = EI (tính chất đối xứng tâm)
⇒ GI = 2GE (3)
Lại có, GB = 2GE (tính chất đường trung tuyến của tam giác) (4)
Từ (3) và (4) suy ra: GB = GI
Suy ra điểm đối xứng với điểm B qua G là I.
+) Ta có: GF = FK (tính chất đối xứng tâm)
⇒ GK = 2GF (5)
GC = 2GF (tính chất đường trung tuyến của tam giác) (6)
Từ (5) và (6) suy ra: GC = GK
Suy ra điểm đối xứng với điểm C qua G là điểm K
Cho tam giác ABC đều có đường cao AH. Trên cạnh BC lấy điểm D bất kì. Gọi E là điểm đối xứng D qua AB, F là điểm đối xứng của D qua AC. Kẻ EM vuông góc với BC, FN vuông góc với BC. Cm EM+FN=AH
Cho đường tròn (O; R), dây BC cố định không đi qua O. Trên cung lớn BC lấy A sao cho tam giác ABC nhọn, AB<AC. Các đường cao AD, BE, CF của tam giác ABC giao nhau tại H. Lấy S đối xứng với A qua EF, K đối xứng với A qua O.
a) CMR B, F, E, C cùng thuộc một đường tròn (đã làm)
b) Trung trực AB cắt đường thẳng song song EF đi qua A tại N. NK cắt đường tròn tại L khác K. CMR NB là tiếp tuyến đường tròn (O).
c) CMR khi A di chuyển trên cung lớn BC thì (BK.AL)/ BL không thay đổi và đường tròn ngoại tiếp của tam giác HDS cố định.
MONG NHẬN ĐƯỢC SỰ GIÚP ĐỠ TỪ CÁC VỊ CAO NHÂN
Mấy bạn cố gắng giải hết bài giùm mình nha. Mình cảm ơn nhiều !!!
b) \(\widehat{NAB}=\widehat{AFE}=\widehat{ACB}\) nên NA là tiếp tuyến của (O).
Do O, N nằm trên đường trung trực của AB nên A, B đối xứng với nhau qua ON.
Từ đó NB là tiếp tuyến của (O).
c) Do NA là tiếp tuyến của (O) nên \(\Delta NAL\sim\Delta NKA(g.g)\)
\(\Rightarrow\dfrac{NA}{NK}=\dfrac{AL}{KA}=\dfrac{NL}{NA}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\dfrac{NA}{NK}.\dfrac{NL}{NA}=\dfrac{NL}{NK}\).
Tương tự do NB là tiếp tuyến của (O) nên \(\left(\dfrac{BL}{KB}\right)^2=\dfrac{NL}{NK}\Rightarrow\left(\dfrac{AL}{KA}\right)^2=\left(\dfrac{BL}{KB}\right)^2\Rightarrow\dfrac{AL}{KA}=\dfrac{BL}{KB}\Rightarrow\dfrac{AL}{BL}=\dfrac{KA}{KB}=\dfrac{2R}{KB}\).
Từ đó \(\dfrac{BK.AL}{BL}=2R\) không đổi \(\).
Sửa lại đề là đường tròn (HDS) đi qua một điểm cố định.
Ta có \(\widehat{ASE}=\widehat{EAS}=\widehat{OCA}\) nên tứ giác OECS nội tiếp. Từ đó \(AO.AS=AE.AC=AH.AD\). Suy ra tứ giác OHDS nội tiếp nên đường tròn ngoại tiếp tam giác HDS đi qua O cố định
cho tam giác ABC vuông tại A . Lấy Điểm D bất kỳ thuộc cạnh BC . Gọi E là điểm đối xứng với D qua AB . F là điểm đối xứng với D qua AC
a) Chứng minh E đới xứng với F qua A
b ) Điểm D ở vị trí nào trên cnahj BC thì EF có độ dài ngắn nhất
a) E đối xứng với D qua AB=> AD=AE và \(\widehat{A_1}=\widehat{A_2}\)
F đối xứng với D qua AC=> AD=AF và \(\widehat{A_3}=\widehat{A_4}\)
\(\Rightarrow AE=\text{AF}\left(=AD\right),\widehat{DAE}+\widehat{D\text{AF}}=2\left(\widehat{A_1}+\widehat{A_3}\right)=2.90^0=180^0\)=> E,A,F thẳng hàng.
Vậy E đối xứng với F qua A(ĐPCM)
b) Ta có: EF=2AD nên EF nhỏ nhất => AD nhỏ nhất => D là chân đường cao kẻ từ A đến BC
1)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC.
2) Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC, E là giao điểm của d với AC. Gọi K là một điểm bất kì thuộc d (K khác E). So sánh chu vi các tam giác AKB và AEB.
3) Cho điểm A nằm trong góc nhọn xOy. Vẽ điểm D đối xứng với A qua Ox. Vẽ điểm E đối xứng với A qua Oy. Gọi B và C theo thứ tự là giao điểm của DE với Ox và Oy. Chứng minh rằng tam giác ABC có chu vi nhỏ nhất trong các tam giác có một đỉnh là A, hai đỉnh kia nằm trên các tia Ox và Oy.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC