Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2023 lúc 7:59

=>4a^2-5ab+b^2=0

=>(a-b)(4a-b)=0

=>a=b hoặc b=4a(loại)

=>P=b^2/3b^2=1/3

Đạt Nguyễn
Xem chi tiết
Trên con đường thành côn...
26 tháng 9 2021 lúc 16:38

Ta có:

\(4a^2+b^2=5ab\Leftrightarrow4a^2+b^2-4ab-ab=0\)

\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\4a-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\left(ktm\right)\\4a=b\left(tm\right)\end{matrix}\right.\)

\(\Rightarrow4a=b\)

\(\Rightarrow\dfrac{5ab}{3a^2+2b^2}=\dfrac{5a.4a}{3a^2+2.\left(4a\right)^2}=\dfrac{20a^2}{3a^2+32a^2}\)

\(=\dfrac{20a^2}{35a^2}=\dfrac{4}{7}\)

Lấp La Lấp Lánh
26 tháng 9 2021 lúc 16:42

\(4a^2+b^2=5ab\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow b=4a\left(do.a\ne b\right)\)

\(\dfrac{5ab}{3a^2+2b^2}=\dfrac{20a^2}{3a^2+32a^2}=\dfrac{4}{7}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 15:42

GV
Xem chi tiết
Nguyễn thành Đạt
28 tháng 1 2023 lúc 19:51

\(Từ\) \(giả\) \(thiết\) : \(4a^2+b^2=\text{5}ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2\)

\(\Leftrightarrow\left(4a-b\right)\left(a-b\right)=0\)

\(TH1:\) \(4a-b=0\) \((\) \(mẫu\) \(thuẫn\) \(với\) \(2a>b\) \()\)

\(TH2:\) \(a-b=0\)

\(\Rightarrow a=b\)

\(\Rightarrow A=\dfrac{a^2}{4a^2-a^2}\)

\(\Rightarrow A=\dfrac{1}{3}\)

Đỗ Văn Tiến
Xem chi tiết
nhok chipu
Xem chi tiết
cuong nguyen manh
11 tháng 4 2016 lúc 19:53

P=1/3 nhé nhớ ko hở??^^

02-Nguyễn Thiện Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
dam thu a
Xem chi tiết
Học tốt
5 tháng 10 2018 lúc 20:30

Đề:

Cho \(4a^2+b^2=5ab\)với 2a>b>0

Tính:\(\dfrac{ab}{4a^2-b^2}\)

Ta có: \(4a^2+b^2=5ab\)

\(\Leftrightarrow4a^2-4ab-ab+b^2=0\)

\(\Leftrightarrow4a\left(a-b\right)+-b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\4a=b\end{matrix}\right.\)

Do \(2a>b\Rightarrow4a>b\)

Nên 4a=b là vô lý

Với a=b Thì:

\(\dfrac{ab}{4a^2-b^2}=\dfrac{a^2}{4a^2-a^2}=\dfrac{a^2}{3a^2}=\dfrac{1}{3}\)

Vậy \(\dfrac{ab}{4a^2-b^2}=\dfrac{1}{3}với2a>b>0\)

Chúc bạn học tốt!