Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Anime
Xem chi tiết
Nguyễn Lê Thuỳ Linh (Bạn...
Xem chi tiết
Khang Diệp Lục
2 tháng 2 2021 lúc 9:06

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

Khang Diệp Lục
2 tháng 2 2021 lúc 9:29

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))

Thị Thiệm Lê
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Shader gaming
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 18:14

a.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)^2-3\left(2x-y\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-y\right)\left(2x-y-3\right)=0\\x+2y=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-y=0\\x+2y=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y-3=0\\x+2y=0\end{matrix}\right.\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{6}{5}\\y=-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 18:16

b.

ĐKXĐ: \(\dfrac{2x-y}{x+y}>0\)

Đặt \(\sqrt{\dfrac{2x-y}{x+y}}=t>0\) pt đầu trở thành:

\(t+\dfrac{1}{t}=2\Leftrightarrow t^2-2t+1=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{\dfrac{2x-y}{x+y}}=1\)

\(\Leftrightarrow2x-y=x+y\Leftrightarrow x=2y\)

Thay xuống pt dưới:

\(6y+y=14\Rightarrow y=2\)

\(\Rightarrow x=4\)

Nguyên Hoàng
Xem chi tiết

1: \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3\sqrt{2}\cdot y=\sqrt{2}\\2x+y\sqrt{2}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\sqrt{2}\cdot y=\sqrt{2}+2\\2x+y\sqrt{2}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{2+\sqrt{2}}{-4\sqrt{2}}=\dfrac{-\sqrt{2}-1}{4}\\2x=-2-y\sqrt{2}=-2+\sqrt{2}\cdot\dfrac{\sqrt{2}+1}{4}=\dfrac{-6+\sqrt{2}}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-\sqrt{2}-1}{4}\\x=\dfrac{-6+\sqrt{2}}{8}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x\sqrt{6}+y\sqrt{2}=4\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\cdot\sqrt{6}=6\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y\sqrt{2}=x\sqrt{6}-2=1-2=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}}{6}\\y=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

MiMi VN
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 9:39

Ta có: \(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0y=-2\sqrt{2}+2\sqrt{3}\left(vôlý\right)\\\left(\sqrt{3}-\sqrt{2}\right)x+y=3\sqrt{2}-2\sqrt{3}\end{matrix}\right.\)

Vậy: Hệ phương trình vô nghiệm

Le Nhat Quynh
Xem chi tiết