tìm y:
6y+4y=5700
16y-5y-y=550
Tính giá trị của các biểu thức
a,M=y^2.(y-3)-y.(-3y-5)-5y voi y=4
b,N=(-y^2+4).(2y^3+6y-1+2.(y^5-4y^3+2)-y^2.(-6y+1) với ý=-3,5
Cho hai đa thức
P(y)=6y3+5y-3y2-1
Q(y)=5y2-4y3-2y+7
a/tính P(y)+Q(y)
b/ tính P(y)-Q(y)
Cho hai đa thức
P(y)=6y3+5y-3y2-1
Q(y)=5y2-4y3-2y+7
a/tính P(y)+Q(y)
b/ tính P(y)-Q(y)
a/
+ P(y)= 6y3+5y-3y2-1 => P(y)=6y3-3y2 + 5y -1
+ Q(y)=5y2-4y3-2y+7 => Q(y)= -4x3 + 5y2 - 2y + 7
P(y)= 6y3 -3y2 + 5y -1
+Q(y)= -4x3 + 5y2 - 2y + 7
____________________________
P(y)+Q(y) = 2x3 + 2y2 + 3y + 6
b)
P(y)= 6y3 -3y2 + 5y -1
-Q(y)= -4x3 + 5y2 - 2y + 7
____________________________
P(y)-Q(y) = 10x3 - 8y2 + 7y - 8
Tìm x,y biết:
a)13x^2+4y^2-12x+12xy+9=0
b)8x^2+y^2-32x+4xy-6y+34=0
c)9x^2+5y^2-12x+6xy+5=0
giúp mình với ,cảm ơn truớc nha
ai giải giúp bạn ý đi ~ cho mình xem với ạ
Tìm x, y, z biết: \(\frac{1+4y}{18}=\frac{1+5y}{24}=\frac{1+6y}{6x}\)
\(\frac{1+4y}{18}=\frac{1+5y}{24}\Rightarrow24+96y=18+90y\)
\(\Rightarrow6+6y=0\Leftrightarrow6\left(1+y\right)=0\)Vậy y = -1
Thay y = -1 ta có :
\(\frac{1-5}{24}=\frac{1-6}{6x}\Leftrightarrow\frac{-5}{30}=-\frac{5}{6x}\left(\frac{-4}{24}=-\frac{5}{30}=\frac{1-5}{24}\right)\)
Vậy 6x = 30 hay x = 5
tìm MIN
A = x2 - 4xy + 5y2 - 6y +20
D = x2 y2 -xy -x -4y + 10
help
mọi người giải giúp em hệ này bằng phương pháp hàm số với!!!
\(\left\{{}\begin{matrix}y^3\left(3x^2+2x-1\right)+4y=8\\y^2x^3+4y^2x-6y+5y^2=4\end{matrix}\right.\)
bài 1: phân tích các đa thức thành nhân tử:
a)x(3-4x)+5(3-4x)
b)2y(5y-6)-4(6-5y)
c)27(x-2)^3-3x(2-x)^2
d)6y(x^2-y^2)-8y(x+y)^2
bài 2:
a)2x^2-xy+2xz-yz
b)x^2-x+2y-4y^2
c)y^2+10y-9z^2+25
d) (x+2y)^3-x^2+4y^2
giúp mik nhé mik cần gấp ạ
2:
a: \(=\left(2x^2-xy\right)+\left(2xz-yz\right)\)
\(=x\left(2x-y\right)+z\left(x-2y\right)=\left(x-2y\right)\left(x+z\right)\)
b: \(=\left(x^2-4y^2\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-1\right)\)
c: \(=\left(y^2+10y+25\right)-9z^2\)
\(=\left(y+5\right)^2-\left(3z\right)^2\)
\(=\left(y+5+3z\right)\left(y+5-3z\right)\)
d: \(=\left(x+2y\right)^3-\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x+2y\right)\left[\left(x+2y\right)^2-\left(x-2y\right)\right]\)
\(=\left(x+2y\right)\left(x^2+4xy+4y^2-x+2y\right)\)
1:
a: \(x\left(3-4x\right)+5\left(3-4x\right)=\left(3-4x\right)\left(x+5\right)\)
b: \(2y\left(5y-6\right)-4\left(6-5y\right)\)
\(=2y\left(5y-6\right)+4\left(5y-6\right)\)
\(=2\left(5y-6\right)\left(y+2\right)\)
c: \(=27\left(x-2\right)^3-3x\left(x-2\right)^2\)
\(=3\left(x-2\right)^2\cdot\left[9\left(x-2\right)-x\right]\)
\(=3\left(x-2\right)^2\left(8x-18\right)=6\left(x-2\right)^2\cdot\left(4x-9\right)\)
d: \(=6y\left(x-y\right)\left(x+y\right)-8y\left(x+y\right)^2\)
\(=2y\left(x+y\right)\left[3\left(x-y\right)-4\left(x+y\right)\right]\)
\(=2y\left(x+y\right)\left(3x-3y-4x-4y\right)\)
\(=2y\left(x+y\right)\left(-x-7y\right)\)
Bài 1
a) x(3 - 4x) + 5(3 - 4x)
= (3 - 4x)(x + 5)
b) 2y(5y - 6) - 4(6- 5y)
= 2y(5y - 6) + 4(5y - 6)
= (5y - 6)(2y + 4)
= 2(5y - 6)(y + 2)
c) 27(x - 2)³ - 3x(2 - x)²
= 27(x - 2)³ - 3x(x - 2)²
= 3(x - 2)²[9(x - 2) - x]
= 3(x - 2)²(9x - 18 - x)
= 3(x - 2)²(8x - 18)
= 6(x - 2)²(4x - 9)
d) 6y(x² - y²) - 8y(x + y)²
= 6y(x - y)(x + y) - 8y(x + y)²
= 2y(x + y)[3(x - y) - 4(x + y)]
= 2y(x + y)(3x - 3y - 4x - 4y)
= 2y(x + y)(-x - 7y)
= -2y(x + y)(x + 7y)
tìm MIN
A = x2 - 4xy + 5y2 - 6y +20
D = x2 y2 -xy -x -4y + 10
help me
ta có: A= x^2 -4xy+5y^2-6y+20
<=>A=(x^2 -2.x.2y +4.y^2)+(y^2 -6y+9) +11
<=>A=(x-2y)^2 +(y-3)^2 +11
Mà (x-2y)^2 >=0 và (y-3)^2 >=0 nên A>=11
Dấu '=' xảy ra khi :(y-3)=0 và x-2y=0=> y=3 và x=6
Vậy GTNN của A là 11 khi x=6 ,y=3
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)