Tìm GTNN:
a. B= ( x-1)2 + (x+3)2 + ( x+5)2
b. C= ( x+5)4 + ( x+1)4
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Bài 1:
a, (x+1)^2-(x-1)^2-3(x+1)(x-1)
b, 5(x+2)(x-2)-1/2(6-8x)^2+17
Bài 2: Tìm x
a, 25x^2-9=0
b, (x+4)-(x+1)(x-1)=16
c, (2x-1)^2 +(x+3)^2-5(x+7)(x-7)=0
Bài 3: Tìm GTNN
A= x^2+5X=7
Bài 4 : Tìm GTLN
B= 6x -x^2-5
Bài 5:Cho x-y=-5. Tính giá trị của N=(x-y)^3-x^2+2xy-y^2
bài 1:
a) (x+1)^2-(x-1)^2-3(x+1)(x-1)
=(x+1+x-1)(x+1-x+1)-3x^2-3
=2x^2-3x^2-3
=-x^2-3
Bài 1
Tìm GTLN : B=1/(x-1)^2+3
Bài 2
a) B= -8/x^2+2
b) C=1/4+2(x-2)^2
Bài 3
Tìm các giá trị x để
a)x+5/x-3<1
b)x+3/x+4>2
Bài 4
Tìm x thuộc Z để biểu thức có GTNN
a) A = 1/x-3 ; b) B = 7-x/x-5
Giúp mình nhanh đi mấy pro ơi :))
Tìm GTNN hoạc GTLN : Câu a) A=(x-2) mũ 2 + 3 . Câu b) B = - (3/2x + 5) mũ 4 - 4 . Câu c) C = |x-2| + |x-3| + 4 . Câu d) D = 3 phần (x+1) mũ 2 +2 .
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
Bài 1: Tìm x, biết:
a) 4.(x+1)^2+(2x-1)^2-8(x-1)(x+1)=11
b) (x-2)^3-x(x+2)(x-2)+6x(x-3)=0
c) (x-1)(x^2+x+1)-x(x-3)(x+3)=6
Bài 2: Tìm GTNN của:
a) A= x^2-2x+10
b) B= x^2-5x-7
c) C= 3x^2+3x-5
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(C=3x^2+3x-5\)
\(3C=9x^2+9x-15\)
\(3C=\left(9x^2+9x+\frac{9}{4}\right)-\frac{69}{4}\)
\(3C=\left(3x+\frac{3}{2}\right)^2-\frac{69}{4}\)
Mà \(\left(3x+\frac{3}{2}\right)^2\ge0\)
\(\Rightarrow3C\ge-\frac{69}{4}\)
\(\Leftrightarrow C\ge-\frac{23}{4}\)
Dấu "=" xảy ra khi :
\(3x+\frac{3}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy ...
Tìm GTNN của các biểu thức : a, A= (x-1)(x-3)(x^2-4x+5); b, B= (x^2-x+6)(x^2+x+2); c, C=(x+8)^4+(x+6)^4; Tìm GTNN của biểu thức A= x^2-4x+1 / x^2
Bài 2: Tìm x, biết:
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
b) (x-3)^3-(x+3)(x^2-3x+9)+3(x+2)(x-2)=2
c) (x+1)^3-(x-1)^3-6(x-1)^2=-10
d) (5x-1)^2-(5x-4)(5x+4)=7
e) (4x-1)^2-(2x+3)^2+5(x+2)+3(x-2)(x+2)=500
Bài 3: Chứng minh đẳng thức:
6) Cho (a+b+c)^2=3(ab+bc+ca)
Chứng minh rằng: a=b=c
7) Cho (a+b+c+1)(a-b-c+1)=(a-b+c-1)(a+b-c-1)
Chứng minh rằng: a=bc
Bài 4: Tìm GTLN, GTNN:
1) Tìm GTNN của:
A= x^2-2x+y^2-4y+2017
B= 2x^2+9y^2-6xy-6x-12y+4046
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
2/
b) ( cái bài này chịu)
c) (x+1)^3-(x-1)^3-6(x-1)^2=-10
(x+1-x+1)\(\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)\(-6\left(x^2-2x+1\right)=-10\)
\(2\left(x^2+2x+1+x^2-1+x^2-2x+1\right)-6x^2+12x-6=-10\)
\(2\left(3x^2+1\right)-6x^2+12x-6=0\)
\(6x^2+2-6x^2+12x-6=-10\)
\(12x=-10+4\)
\(12x=-6=>x=-\frac{1}{2}\)
d) (5x-1)^2-(5x-4)(5x+4)=7
\(25x^2-10x+1-25x^2+16=7\)
-10x = 7 - 17
-10x = -10
x= 1
Câu còn lại bn làm tương tự
3/
a)
Ta có:
(a+b+c)^2=3(ab+bc+ca)
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc = 3ab + 3bc + 3ac
a^2 + b^2 + c^2 + 2ab + 2ac + 2bc - 3ab - 3bc - 3ac = 0
a^2 + b^2 + c^2 - ac - bc - ab = 0
2a^2 + 2b^2 + 2c^2 - 2ac - 2bc - 2ab = 0
(a2-2ab+b2)+(a2-2ac+c2) + (b2-2bc +c2) = 0
(a-b)^2 + (a-c)^2 + (b-c)^2 =0
=> a=b=c
1.Tìm x biết:
a, (3x+1)(2x-5)-(x+5)(6x+1)=-3
b, (x+4)2-(x+1)(x-1)=16
2.a, Tim GTNN của B=(x+2)(x2+5x+4)(x+3)
b, Tìm số tự nhiên n để P=n3+4n-5 là số nguyên tố
P=n3+4n-5=n3-n+5n-5=n(n2-1)+5(n-1)
=n(n-1)(n+1)+5(n-1)=(n-1)[n(n+1)+5]
=(n-1)(n2+n+5)
Vì n \(\in\) N nên n2+n+5 > 1
Để P là số nguyên tố thì n-1=1=>n=2
Thử lại thấy n=2 thỏa mãn
Vậy n=2