Lời giải:
a)
\(B=(x-1)^2+(x+3)^2+(x+5)^2=(x^2-2x+1)+(x^2+6x+9)+(x^2+10x+25)\)
\(=3x^2+14x+35=3(x^2+\frac{14}{3}x+\frac{7^2}{3^2})+\frac{56}{3}\)
\(=3(x+\frac{7}{3})^2+\frac{56}{3}\geq \frac{56}{3}\)
Dấu "=" xảy ra khi \((x+\frac{7}{3})^2=0\Leftrightarrow x=\frac{-7}{3}\)
Vậy \(B_{\min}=\frac{56}{3}\Leftrightarrow x=\frac{-7}{3}\)
b) Đặt $x+3=a$. Khi đó:
\(C=(x+5)^4+(x+1)^4=(a+2)^4+(a-2)^4\)
\(=2a^4+28a^2+32\geq 2.0+28.0+32=32\)
Dấu "=" xảy ra khi \(a^4=a^2=0\Leftrightarrow a=0\Leftrightarrow x=-3\)
Vậy \(C_{\min}=32\Leftrightarrow x=-3\)