2.
a)Xét hiệu:
\(a^4+1-a\left(a^2+1\right)\)
\(=a^4+1-a^3-a\)
\(=a^3\left(a-1\right)-\left(a-1\right)\)
\(=\left(a^3-1\right)\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+a+1\right)\left(a-1\right)\)
\(=\left(a-1\right)^2\left(a^2+a+1\right)\)
Ta có:
\(a^2+a+1=a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{2}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
Suy ra:
\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\)
=> \(a^4+1\ge a\left(a^2+1\right)\)
1)a)\(A=\left|x\right|+\left|1+x\right|=\left|x\right|+\left|-1-x\right|\ge\left|x-1-x\right|=1\)
\(\Rightarrow MINA=1\)
b)MINB=3
2b)Ta có:\(\left(a^2-1\right)^2\ge0\)
\(\Leftrightarrow a^4-2a^2+1\ge0\)
\(\Leftrightarrow a^4+1\ge2a^2\)
\(\Rightarrow\dfrac{a^2}{a^4+1}\le\dfrac{a^2}{2a^2}=\dfrac{1}{2}\left(đpcm\right)\)