Những câu hỏi liên quan
hungnhm
Xem chi tiết
Đỗ Khả Trí
30 tháng 4 2020 lúc 10:23

bạn làm được câu 1 chưa ạ chụp cho mình

Bình luận (0)
 Khách vãng lai đã xóa
Minh Khoa
Xem chi tiết
Nguyễn Linh Chi
1 tháng 3 2020 lúc 18:14

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
1 tháng 3 2020 lúc 19:08

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
Lala Yuuki
Xem chi tiết
Trần Minh Hoàng
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Bình luận (0)
Trần Minh Hoàng
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Bình luận (0)
Friendship is wonderful
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 11 2016 lúc 11:45

Thay \(x=\frac{a-b}{a+b};y=\frac{b-c}{b+c};z=\frac{c-a}{c+a}\) vào (x + 1)(y + 1)(z + 1) và (1 - x)(1 - y)(1 - z) ta có:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(\frac{a-b}{a+b}+1\right)\left(\frac{b-c}{b+c}+1\right)\left(\frac{c-a}{c+a}+1\right)\)

\(=\frac{2a}{a+b}.\frac{2b}{b+c}.\frac{2c}{c+a}=\frac{2a.2b.2c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\left(1\right)\)

\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=\left(1-\frac{a-b}{a+b}\right)\left(1-\frac{b-c}{b+c}\right)\left(1-\frac{c-a}{c+a}\right)\)

\(=\frac{2b}{a+b}.\frac{2c}{b+c}.\frac{2a}{c+a}=\frac{2b.2c.2a}{\left(a+b\right).\left(b+c\right).\left(c+a\right)}\left(2\right)\)

Từ (1) và (2) => đpcm

Bình luận (0)
Vũ Huy Hoàng
Xem chi tiết
GG boylee
Xem chi tiết
Vũ Thùy Linh
Xem chi tiết
Dưa Dưa Tiểu
Xem chi tiết
Hoàng Thanh Tuấn
2 tháng 6 2017 lúc 20:55

Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)

\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)

Áp dụng bất đẳng thức AM - GM ta có :

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)

Bình luận (0)
Dưa Dưa Tiểu
3 tháng 6 2017 lúc 9:21

tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?

Bình luận (0)
Hoàng Thanh Tuấn
3 tháng 6 2017 lúc 10:56

mình nhìn nhầm đề tưởng xyz =1 ;))))

Áp dụng AM - GM

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2\ge2y^2\)

\(\left(\frac{xy}{z}\right)^2+\left(\frac{xz}{y}\right)^2\ge2x^2\)

\(\left(\frac{zy}{x}\right)^2+\left(\frac{zx}{y}\right)^2\ge2y^2\)

cộng vế với vế có 

\(2\left(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2\left(\frac{xz}{y}\right)^2\right)\ge\left(x^2+y^2+z.^2\right).2\ge6\)

\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\)

Bình luận (0)
Đào Thu Hiền
Xem chi tiết