Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thái Dương
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Thanh Hoàng Thanh
7 tháng 12 2021 lúc 8:47

a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.

Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).

Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.

Mà MD là đường cao (MD \(\perp\) AB).

=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).

Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.

Mà ME là đường cao (ME \(\perp\) AC).

=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).

Xét tam giác MBD và tam giác MAD có:

+ MD chung.

+ MB = AM (cmt).

+ ^BMD = ^AMD (MD là phân giác ^AMB).

=> Tam giác MBD = Tam giác MAD (c - g - c).

=> ^MBD = ^MAD (2 góc tương ứng). 

=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)

Xét tam giác MAE và tam giác MCE có:

+ ME chung.

+ MC = AM (cmt).

+ ^AME = ^CME (ME là phân giác ^AMC).

=> Tam giác MAE = Tam giác MCE (c - g - c).

=> ^MAE = ^MCE (2 góc tương ứng). 

=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)

Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).

b) Ta có: DE = DA + AE.

Mà DA = DB (Tam giác MBD = Tam giác MAD).

      EA = EC (Tam giác MAE = Tam giác MCE).

=> DE = BD + CE (đpcm).

 
neko Miru
Xem chi tiết
Nguyễn Ngọc Bảo Xuân
Xem chi tiết
Vũ Thành Đạt
9 tháng 8 2015 lúc 16:09

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt AC tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB \(\Rightarrow\) BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB \(\Rightarrow\) tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok

Hoàng Phú Huy
1 tháng 4 2018 lúc 8:22

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt A C tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB  ⇒ BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB ⇒ tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok

AduduOsad
Xem chi tiết
Minh Nguyen
18 tháng 2 2020 lúc 0:56

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

Khách vãng lai đã xóa
Nguyễn Thị Khánh Huyền
21 tháng 3 2020 lúc 9:07

mình không biết

Khách vãng lai đã xóa
Trần Thiện Hiếu
28 tháng 3 2020 lúc 18:10

Tài trợ

Khách vãng lai đã xóa
Hazuimu
Xem chi tiết
Thanh Hoàng Thanh
6 tháng 3 2022 lúc 21:01

undefined

Hazuimu
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 23:05

a: BD=4cm

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

c: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

=>AH vuông góc với BC tại H

mà ΔACB cân tại A

nên AH vuông góc với BC tại trung điểm của BC

Hazuimu
6 tháng 3 2022 lúc 21:20

Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ 

yeulannhieulam
Xem chi tiết
neko Miru
Xem chi tiết