so sánh: A = \(\dfrac{10^7+5}{10^7-8}\) và B = \(\dfrac{10^8+6}{10^8-7}\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
So sánh hai phân số:
a) \(\dfrac{1}{5}\) và \(\dfrac{3}{5}\) b) \(\dfrac{9}{10}\) và \(\dfrac{3}{10}\) c) \(\dfrac{7}{12}\) và \(\dfrac{11}{12}\) d) \(\dfrac{7}{8}\) và \(\dfrac{5}{8}\)
e) \(\dfrac{17}{100}\) và \(\dfrac{23}{100}\) g) \(\dfrac{4}{10}\) và \(\dfrac{1}{10}\) h) \(\dfrac{100}{100}\) và \(\dfrac{49}{100}\) k) \(\dfrac{15}{15}\) và \(\dfrac{2}{15}\)
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
4, so sánh A và B:
a,A=\(\dfrac{3}{8^3}+\dfrac{7}{8^4}\);B=\(\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
b,A=\(\dfrac{10^7+5}{10^7-8}\);B=\(\dfrac{10^8+6}{10^8-7}\)
c,A=\(\dfrac{10^{1992}+1}{10^{1991}+1}\);B=\(\dfrac{10^{1993}+1}{10^{1992}+1}\)
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
so sánh các phân số sau:
a)\(\dfrac{-8}{9}\) và \(\dfrac{-7}{9}\)
b)\(\dfrac{6}{7}\) và \(\dfrac{11}{10}\)
a)\(\dfrac{-8}{9}< \dfrac{-7}{9}\\ \dfrac{6}{7}< \dfrac{11}{10}\)
a) Vì -8<-7 nên \(\dfrac{-8}{9}< \dfrac{-7}{9}\)
b) Ta có: \(\dfrac{6}{7}< 1;\dfrac{11}{10}>1\)
nên \(\dfrac{6}{7}< \dfrac{11}{10}\)
Giải:
a) -8/9 < -7/9
b) Ta có: 6/7 = 60/70
11/10 = 77/70
Vì 60/70 < 77/70 nên :
6/7 < 11/10
2/ So sánh các phân số sau :
a/ \(\dfrac{7}{10}\) và \(\dfrac{11}{15}\) ; b/ \(\dfrac{-1}{8}\) và \(\dfrac{-5}{24}\) ; c/ \(\dfrac{25}{100}\) và \(\dfrac{10}{40}\)
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
So sánh phân số : \(\dfrac{5}{6};\dfrac{9}{10};\dfrac{7}{8}\)
\(\dfrac{5}{6}< \dfrac{9}{10}>\dfrac{7}{8}\)
so sánh A = 10^7-5/10^7-8 và B = 10^8+6/10^8-7
Lời giải:
\(A=\frac{10^7-5}{10^7-8}=\frac{10^7-8+3}{10^7-8}=1+\frac{3}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta thấy: \(\frac{3}{10^7-8}=\frac{30}{10^8-80}> \frac{30}{10^8-7}> \frac{13}{10^8-7}\)
\(\Rightarrow 1+\frac{3}{10^7-8}> 1+\frac{13}{10^8-7}\Rightarrow A>B\)
so sánh A và B
A = \(\dfrac{10^7+5}{10^7-8}\) và B=\(\dfrac{10^8+6}{10^5-7}\)
\(A=\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}< 2\)
\(B=\dfrac{10^8+6}{10^5-7}>\dfrac{10^8}{10^5}=10^3\)
B >>> A
So sánh A và B :
a) \(A=\dfrac{20}{39}+\dfrac{22}{27}+\dfrac{18}{43}\)
\(B=\dfrac{14}{39}+\dfrac{22}{29}+\dfrac{18}{41}\)
b) \(A=\dfrac{3}{8^3}+\dfrac{7}{8^4}\)
\(B=\dfrac{7}{8^3}+\dfrac{3}{8^4}\)
c) \(A=\dfrac{10^7+5}{10^7-8}\)
\(B=\dfrac{10^8+6}{10^8-7}\)
d) \(A=\dfrac{10^{1992}+1}{10^{1991}+1}\)
\(B=\dfrac{10^{1993}+1}{10^{1992}+1}\)
d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B
cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A
Suy ra B>A(chuc ban hoc goi nhe)