cho tam giác ABC nhọ.Vẽ ra phía ngoài tam giác ABC các tam giác vuông cân là ABD vàtam giác AcE.Gọi M là trung điểm của DE lấy F sao cho M là trung điểm của À.CMR:a,góc ABC=góc DAFb,MA cắt BC ở H.tam giác ABH là tam giác gì vì sao
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
cho tam giac abc nhọn, ab<ac. vẽ ra phia ngoài tam giác các tam giác vuông tại a là abd và ace. gọi m là trung điểm của DE. lấy điểm f sao cho m là trung điểm của AF
a)CM:góc abc=góc daf
b)MA cắt BC tại H. tam giác abh là tam giác gì
Bài 1: Cho tam giác nhọn ABC. Vẽ ra phía ngoài của tam giác này các tam giác ABD và tam giác ACE vuông cân tại A. Gọi M là trung điểm của DE. Chứng minh rằng hai đường thẳng MA và BC vuông góc với nhau.
cho tam giác ABC, vẽ ra phía ngoài tam giác ABC các tam giác vuông cân ABD và ACE( cân tại A). AH vuông với BC, M là trung điểm của BC
a. CM AH đi qua trung điểm của DE
b. CM đường thẳng AM vuông góc với DE
a: Vẽ DI,EK vuông góc AH
Xét ΔIDA và ΔHAB có
góc DIA=góc AHB
AD=AB
góc A1=góc ABH(=90 độ-góc A2)
=>ΔIDA=ΔHAB
=>ID=AH(1)
Xét ΔKAE và ΔHCA có
góc EKA=góc AHC
AE=AC
góc EAK=góc HCA
=>ΔKAE=ΔHCA
=>AH=EK=DI
Gọi giao của AH và DE là N
Xét ΔDIN và ΔKEN co
góc DIN=góc EKN
DI=EK
góc ENK=góc DNK
=>ΔDIN=ΔKEN
=>EN=DN
=>N là trung điểm của DE
b: Lấy F đối xứng A qua M
Xet ΔAMB và ΔFMC có
MA=MF
góc AMB=góc FMC
MB=MC
=>ΔAMB=ΔFMC
=>AB=CF và góc B=góc FCM
=>góc ACF=góc ACB+góc B=180 độ-góc BAC
Gọi giao của AM và DE là I
Xet ΔACF và ΔEAD có
AC=ED
CF=AD
góc EAD=góc ACF
=>ΔACF=ΔEAD
=>AF=DE
=>AM=1/2DE
ΔAMB=ΔFMC
=>góc BAM=góc MFC
ΔACF=ΔEAD
=>góc MFC=góc EDA
=>góc BAM=góc EDA
=>góc EDA+góc DAI=90 độ
=>AM vuông góc DE
cho tam giác ABC có 3 góc nhọn.Dựng ra phía ngoài 2 tam giác vuông cân đỉnh A là ABD;ACE.Gọi M;N;P lần lượt là trung điểm của BC;BD;CE
a)BE=CD BE vuông góc với CD
b)Tam giác MNP vuông cân
Cho tam giác ABC vẽ ra phía ngoài của tam giác ABC các tam giác ABD, tam giác ACE vuông cân tại A. Gọi M là trung điểm BC. Đ ương thẳng AM cắt DE tại H. CMR:
a, AM = DE/2
b, AM vuông góc với DE.
c, Gọi I và E là trung điểm của BD, CE. CM: Tam giác MIF vuông cân.
cho tam giác ABC nhọn. vẽ ra phía ngoài tam giác ABC hai tam giác vuông cân là ABD và ACE. gọi M là trung điểm BC. CMR: a,2AM=DE b,AM vuông góc DE
cho tam giác ABC nhọn. vẽ ra phía ngoài tam giác ABC hai tam giác vuông cân là ABD và ACE. gọi M là trung điểm BC. CMR: a,2AM=DE b,AM vuông góc DE
Cho tam giác ABC, trung tuyến AM. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABD và ACE.
a, Trên tia đối của tia MA lấy điểm F sao cho MF = AM . Chứng minh góc ABF bằng góc DAE.
b, Chứng minh DE = 2AM.