GPT:
\(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
GIÚP MK nhé! :)
giải phương trình : \(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
giải phương trình :
\(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
*Cuộc thi toán nâng cao cấp THCS (vòng 3) (dành cho khối 7-8-9)
Lần này chỉ có 1 đề,mọi người tham gia nhé!
Đề: Giải phương trình:
\(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
\(\sqrt[3]{2x+2}=x^3+9x^2+26x+28\)
\(\Rightarrow\left(2x+2\right)^3=\left(x+3\right)^3+1\)
\(\Rightarrow\left(2x+2\right)^3-\left(x+3\right)^3=1\)
\(\Rightarrow\left(2x+2-x-3\right)\left[\left(2x+2\right)^2+\left(2x+2\right)+\left(x+3\right)^2\right]=1\cdot1=\left(-1\right)\left(-1\right)\)
\(\Rightarrow\left(x-1\right)\left[\left(2x+2\right)^2+\left(2x+2\right)\left(x+3\right)+\left(x+3\right)^2\right]=1\cdot1=\left(-1\right)\left(-1\right)\)
Với:\(x-1=1\Rightarrow x=2\)
Thay vào thừa số thứ 2 thấy sai nên loại
Với:\(x-1=-1\)
\(\Rightarrow x=0\)
Thay vào thừa số thứ 2 thấy sai nên loại.
Vậy phương trình vô nghiệm.
tth xem có đúng ko nha!cao cấp quá!Nếu sai thì ib vs mình:))
Những người muốn hoặc đã tham gia cuộc thi có thể lấy ảnh đại diện của cuộc thi (nếu thích)
Link ảnh: Ảnh đại diện cuộc thi
mik sai r nha.đừng tham khảo bài mik.để suy nghĩ thêm:))
giúp cần gấp tối nay, xong trước 7h tối
1)Gpt: 2x3 + x + 3 =0
2)Gpt: x3 + x2 - x\(\sqrt{2}\) - 2\(\sqrt{2}=0\)
3)Gpt: 23 -9x + 2 = 0
4)Gpt: x3 - 42 + 7x - 6 = 0
5)Gpt: 2x3 + 7x2 + 7x + 2 = 0
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
Giải phương trình 1, \(x^2+9x+7=\left(2x+1\right)\sqrt{2x^2+4x+5}\)
2, GPT \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
3. GHPT \(\left\{{}\begin{matrix}x^2-2y-1=2\sqrt{5y+8}+\sqrt{7x-1}\\\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\end{matrix}\right.\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
ĐKXĐ: ...
Từ pt dưới:
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)
\(\Leftrightarrow y=x-2\)
Thế vào pt trên:
\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)
\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)
\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)
\(\Leftrightarrow x^2-5x+2=0\)
giúp mk vs : gpt :
A= \(\sqrt{x^2-2x+5}+2\sqrt{4x+5}=x^3-2x^2+5x+4\)
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1
GPT \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
\(a=2\sqrt{x+1}+\sqrt{4x+1}\)
\(a^2=4x+8+4x+1+4\sqrt{\left(x+2\right)\left(4x+1\right)}=8x+9+4\sqrt{4x^2+9x+2}=-3+4\left(2x+3+\sqrt{4x^2+9x+2}\right)\)
<=> a^2 = -3 + 4a
3x(-x^2+2x+3)-26x^2(-x^2+2x+3)-9x^4
Lời giải:
$3x(-x^2+2x+3)-26x^2(-x^2+2x+3)-9x^4$
$=(-x^2+2x+3)(3x-26x^2)-9x^4$
$=(-x^2+2x+3).x(3-26x)-9x^4$
$=x[(-x^2+2x+3)(3-26x)-9x^3]$
$=x(17x^3-55x^2-72x+9)$
gpt \(\sqrt{2x^2-x+3}+x^2-x=\sqrt{21x-17}\)
mng tham khảo bài này nhé
\(\Leftrightarrow\sqrt{2x^2-x+3}-\left(x+1\right)+\left(x^2+1\right)-\sqrt{21x-17}=0\)
=>\(\dfrac{2x^2-x+3-x^2-2x-1}{\sqrt{2x^2-x+3}+x+1}+\dfrac{x^4+2x^2+1-21x+17}{x^2+1+\sqrt{21x-17}}=0\)
=>x^2-3x+2=0
=>x=1 hoặc x=2